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ABSTRACT 

Endothelial death/dysfunction is a critical process in the development of 

cardiovascular diseases. Finding a source of endothelial cells (ECs) for regenerative 

medicine is a challenging yet fundamental issue. Induced pluripotent stem cells 

(iPSCs) constitute an attractive source of cells for transplantation because of their 

high proliferation and differentiation potential.  

 

We established a protocol using collagen and VEGF to drive the functional 

differentiation of iPSCs into ECs. After 7 days, the cells strongly expressed EC 

markers (VE-cadherin, Flk1, vWF and eNOS) and formed tubes on Matrigel. Next, 

we compared the miRNA signature of undifferentiated and differentiated iPSCs with 

VEGF. Amongst the validated miRNAs, we focused on miR-21 which was 

previously shown to be involved in angiogenesis. Overexpression of miR-21 (Pre-

21) in pre-differentiated iPSCs induced EC marker upregulation and in vitro and in 

vivo capillary formation; accordingly, inhibition of miR-21 (LNA-21) produced the 

opposite effects. Interestingly, miR-21 overexpression increased TGF-β2 mRNA and 

secreted protein level, consistent with the strong upregulation of TGF-β2 during 

iPSC differentiation. In addition, treatment of iPSCs with TGF-β2 induced EC 

marker expression and in vitro tube formation, through induction of VEGF secretion. 

Inhibition of SMAD3, a downstream effector of TGF-β2, strongly decreased VE-

cadherin expression. Furthermore, TGF-β2 neutralization inhibited miR-21 induced 

EC marker upregulation, indicating that TGF-β2/SMAD3 pathway is required during 

iPSC differentiation into ECs. We then confirmed the PTEN/AKT pathaway as a 

direct target of miR-21 and we showed that PTEN shutdown during the 

differentiation of iPSCs increased EC marker expression. 

We demonstrated that miR-21 directly targets the PTEN/AKT pathway, which also 

involves TGF-β2 pathway regulation by miR-21. Moreover the PTEN/AKT pathway 

is required in the VEGF-induced EC differentiation of iPSCs. Thus, the molecular 

mechanisms elucidated in this work might provide the basic information for stem 

cell therapy for vascular disease, e.g. tissue engineering and endothelial repair in 

damaged vessels. 
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1.1 THE VASCULAR SYSTEM 

The cardiovascular system is a complex organ that passes blood around the body, 

bringing nutrients and oxygen to the cells and removing waste products and carbon 

dioxide.   

The main mechanisms leading to blood vessel formation are two, namely 

vasculogenesis and angiogenesis. Vasculogenesis is the formation of new vessels 

from progenitor cells and was historically believed to occur in embryo development, 

during the formation of the primitive vascular network from angioblasts, which 

occurs in several stages.  First, hemangioblasts, the common putative precursors of 

endothelial and hematopoietic cells in the embryo, differentiate from the mesoderm. 

These differentiated cells then aggregate to form blood islands. The inner cells of the 

blood islands become hematopoietic stem cells, or blood-forming cells and the outer 

cells become angioblasts, which give rise to the blood vessels (Gilbert 2000). 

Angiogenesis is the formation of new blood vessels from pre-existing ones and 

occurs both during embryonic development and during physiological and 

pathological conditions in adult life. Angiogenesis can be initiated by several stimuli 

including hypoxia and is pivotal to the development of many diseases, such as cancer 

(Carmeliet 2003). More recently, the discovery of vasculogenic bone marrow and 

tissue resident progenitor cells in the adult has challenged the definition of 

vasculogenesis and extended it into adult life (Garin, Mathews et al. 2005). Finally, 

another form of de novo vascular development is arteriogenesis, which is caused by 

mechanical forces like shear stress and occurs through the remodelling of pre-

existing vasculature and expansion of collateral vessels (Carmeliet 2000, Heil, 

Eitenmuller et al. 2006). 

Large blood vessels are composed of three layers: the innermost is the tunica intima, 

which is composed of a single continuous layer of endothelial cells (ECs) and 

mediates the exchange of nutrients and cells with the circulation. Surrounding the 

intima is the thick layer of smooth muscle cells (SMCs) composing the tunica media, 

which is responsible for the maintenance of the vessel tone and elasticity. Finally, 

adventitia is the external layer mainly composed of fibroblasts and connective tissue 

and incorporating the vasa vasorum, the small network of vessels that provides 

oxygen and nutrients to the cells in the vessel wall (Figure 1). Vessels within the 
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microvascular system (i.e. capillaries and venules) are formed by contractile cells 

called pericytes that wrap around the endothelial cell layer (Carmeliet 2000). 

 

 

Figure 1 Anatomy of artery 

In this schematic representation of the arterial wall the three layers of a blood vessel (intima, media 

and adventitia) are shown together with the cells that compose each layer (endothelial cells, smooth 

muscle cells and fibroblast). http://en.wikipedia.org/wiki/File:Anatomy_artery.png 

 

 

1.1.1. ENDOTHELIAL CELL CHARACTERIZATION AND 

FUNCTION 

Endothelial cells line the blood vessels of the entire circulatory system, from the 

aorta to capillaries, and represent the barrier between circulating blood and the rest 

of the vessel wall. The endothelium is a dynamic and heterogeneous organ with 

secretory, metabolic, synthetic and immunological functions (Fishman 1982). 

Endothelial cells cover a surface in an adult human of approximately 1 to 7 m
2
, 

which is composed of approximately 1 to 6 x 10
13

 cells and weighs approximately 1 

kg (Augustin, Kozian et al. 1994).  ECs, which line the vessels of all organs, regulate 
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the flow of nutrients, biologically active molecules and blood cells through the 

action of membrane-bound receptors, lipid transporting particles, metabolites and 

hormones and specific junctional proteins and receptors that govern cell-cell and 

cell-matrix interactions (Cines, Pollak et al. 1998).  

A unique characteristic of ECs is that, despite their many common functional and 

morphological features, they display a great heterogeneity in different organs or in 

the same organ in the endothelium of large and small vessels, veins and arteries. For 

instance the kidney contains different types of ECs: fenestrated in the peritubular 

capillaries, discontinuous in glomerular capillaries and continuous in other regions 

(Risau 1995). 

As mentioned before, vascular and hematopoietic tissues develop together after 

implantation, with the formation of blood islands within the primitive yolk sac. 

During embryonic development, ECs differentiate from a common precursor called 

angioblast and acquire organ-specific properties. The angioblasts form the outer 

layer of ECs in the blood island, whereas the hematopoietic stem cells compose the 

inner cluster, which gives rise to the first embryonic blood cells (Risau and Flamme 

1995). Angioblasts are primarily found in embryonic mesoderm, arising from the 

lateral mesodermal plate and cardiac crescent and some cells  migrate into the 

forming brain or into the endocardium of the early heart tube (Palis, McGrath et al. 

1995). Other angioblasts differentiate into the ECs of the vitelline vessels, which 

allow the blood cells from the yolk sac to circulate within the body of the embryo 

(Risau and Flamme 1995). Moreover, ECs directly differentiated from the 

surrounding mesenchyme of invading vessels compose the vasculature of the viscera 

(Risau and Flamme 1995). Endodermally-derived cells of the branching airway have 

been shown to induce formation of angioblasts that become part of the pulmonary 

vasculature (Buck, Edelman et al. 1996).  

One of the determinants of EC specific pathways of differentiation is the local 

environment in which the cells differentiate and their interaction with surrounding 

cells, which may occur through the release of soluble mediators, cell-to-cell adhesion 

and the synthesis and assembly of matrix proteins on which the endothelium develop 

(Garlanda and Dejana 1997). Importantly, many recent studies showed that vascular 

development is mediated by the action of two important factors, basic fibroblast 
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growth factor (bFGF) and vascular endothelial growth factor (VEGF) (Beck and 

D'Amore 1997).  

ECs have been shown to express specific markers which are used to identify these 

cells in vivo and in vitro. In the majority of cases these molecules have been 

discovered using monoclonal antibodies directed to ECs. The most identified 

markers for ECs are von Willebrand factor (vWF), platelet–endothelial cell adhesion 

molecule (PECAM-1/CD31), angiotensin-converting enzyme, type I scavenger 

receptor, vascular endothelial cadherin (VE-cadherin), CD34, CD102/ICAM-2, 

CD105/endoglin, CD36 and thrombomodulin (Garlanda and Dejana 1997).  

Detailed studies of endothelial function started in the 1970s with the development of 

techniques to culture ECs in vitro (Jaffe, Nachman et al. 1973, Lewis, Hoak et al. 

1973). 

Endothelium is a semi-permeable barrier that regulates the conduction of blood and 

the passage of fluids and solutes between the blood and the interstitial space; the 

permeability of this barrier and cell adhesion is tightly regulated by intracellular 

junction. The most important intracellular junctions that have been characterized as 

the cell–cell adhesive barrier structures in the microvascular endothelium are the 

adherens junction and the tight junctions; the structural and functional integrity of 

these junctions is a major determinant of paracellular permeability (Michel and 

Curry 1999).  Adherens junctions are found in nearly all types of vascular beds, 

especially in the peripheral microvasculature and are impermeable to albumin (69 

kDa) and other large proteins, indeed representing the major responsible of 

endothelial barrier to macromolecules in many organs and tissues (Mehta and Malik 

2006). Amongst the adherens junctions, VE-cadherin, also known as cadherin-5, is 

believed to be the most important protein in forming the molecular basis and 

regulating the function of adherens junctions. VE–cadherin is a transmembrane 

receptor, whose extracellular domain binds to the extracellular domain of another 

VE–cadherin expressed in the membrane of an adjacent endothelial cell; it is found 

almost exclusively on ECs and promotes cell-cell adhesion by a calcium-dependent 

homotypic mechanism (Dejana, Orsenigo et al. 2008). Intracellularly, VE–cadherin 

is connected to the actin cytoskeleton through binding to β-catenin and γ-catenin, 

which in turn are connected to actin via binding to α-catenin (Mehta and Malik 
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2006). The catenins indeed not only represent a structural linkage between VE–

cadherin and the cytoskeleton, but they can also transduce biochemical signals for 

cell–cell communications; the maintenance of endothelial barrier function is indeed 

ensured by the stability of the VE–cadherin–catenin–cytoskeleton complex (Vincent, 

Xiao et al. 2004). Adherens junctions are also involved in many signalling events 

regulating gene expression (Bazzoni and Dejana 2004). 

There are many other proteins at cell–cell contacts which can interact with adherens 

junctions, such as E-cadherin, junctional adhesion molecules, and PECAM-1, a 

member of the Ig superfamily. Within the vascular compartment, PECAM-1 is 

expressed on leukocytes, platelets, and on ECs mostly at junctions between adjacent 

cells. PECAM-1 is known to bind to integrins on leukocytes to facilitate their 

transmigration across the microvascular endothelium; in addition to its adhesive 

properties, it plays a role in signal transduction, angiogenesis, platelet function, 

thrombosis and endothelial mechanosensing of fluid shear stress (Woodfin, Voisin et 

al. 2007).  

Tight junctions are less common than adherens junctions in the peripheral 

microvasculature, and are mainly found in the microvascular endothelium of some 

specialized tissues, such as the blood–brain or blood–retinal barriers (Hawkins and 

Davis 2005). Tight junctions contribute to endothelial barrier function by impeding 

the passage of much smaller molecules (<1 kDa), such as small inorganic ions (e.g., 

Na
+
). Endothelial tight junctions are based on the interactions of the tight junction 

proteins occludin, claudins (3/5), which are integral membrane proteins, and 

junctional adhesion molecule-A, a member of the immunoglobin superfamily of 

proteins. Occludin, claudins and junctional adhesion molecules-A are connected to 

the actin cytoskeleton through binding to zona occludens proteins (ZO-1, ZO-2) and 

α-catenin (Schneeberger and Lynch 2004, Hawkins and Davis 2005, Abbott, 

Patabendige et al. 2010). 

Additionally, links between the endothelial basolateral membrane and the 

surrounding extracellular matrix of the microvascular wall are maintained by focal 

adhesions (Wu 2005). The main components of focal adhesions are the integrins, 

transmembrane receptors which belong to a family of glycoproteins. Intracellularly 

integrins interact with the cytoskeleton through the linker proteins paxillin, talin, 
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vinculin, or α-actinin, whereas extracellularly they bind to the matrix proteins 

fibronectin, collagen, vitronectin, fibrinogen and laminin (Petit and Thiery 2000, 

Hodivala-Dilke, Reynolds et al. 2003).  

ECs also show an anti-thrombotic function, preventing the progression of the 

thrombotic response after endothelial damage. The release of tissue factor inhibitor 

prevents coagulation.  Furthermore, healthy ECs respond to a number of stimuli, 

such as serotonin from aggregating platelets and thrombin, by releasing nitric oxide 

(NO), which relaxes the underlying vascular SMCs (Kolluru, Siamwala et al. 2010).  

In ECs NO production is mediated by the enzyme nitric oxide synthase (NOS), of 

which there are three isoforms: inducible, neuronal and endothelial (eNOS); eNOS 

activity regulates blood vessel dilatation (van Hinsbergh 2001). Increasing 

concentration of Ca
2+ 

by the action of eNOS agonists such as bradykinin, 

acetylcholine, ATP, ADP, substance P and thrombin, induces the association 

between Ca
2+

 and calmodulin, which binds to and activates eNOS. eNOS activity is 

also increased by phosphorylation and acetylation (Butt, Bernhardt et al. 2000, Jung, 

Kim et al. 2010).  eNOS is expressed in human endothelial progenitor cells (EPCs) 

(Qiao, Niu et al. 2010) and during the differentiation of bone marrow stem cells into 

ECs (Liu, Jiang et al. 2007).  

NO, together with prostacyclin and prostaglandin-E2, inhibits platelet aggregation, 

preventing abnormal constriction (vasospasm) of the coronary arteries and inhibiting 

the expression of endothelial adhesion molecules and thus preventing the adhesion 

and penetration of macrophages.  

The endothelium is also responsible for regulating vascular tone, which is 

maintained by a balance between the production of vasodilatation and 

vasoconstriction factors.  Synthesis of plasminogen activators stimulates fibrinolysis 

to lyse a developing thrombus before it causes damage (van Hinsbergh 2001).  NO 

diffusion from the EC into adjacent vascular SMCs leads to reduced SMC 

contraction. 

Endothelium-derived NO also prevents the proliferation of vascular SMCs and limits 

the formation of oxidised low density lipoprotein (LDL), reducing the risk of 

atherogenesis (Michel and Vanhoutte 2010). 
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Finally vWF, a blood glycoprotein involved in homeostasis, is considered a specific 

EC marker and is produced by ECs and megakaryocytes only; it is heterogeneously 

distributed throughout the vasculature and differently expressed by ECs (Zanetta, 

Marcus et al. 2000). It has been shown that increased plasma levels of vWF are 

involved in a large number of cardiovascular, neoplastic and connective tissue 

diseases, and may contribute to an increased risk of thrombosis (Budde and 

Schneppenheim 2001). 

In vivo, ECs are in contact on their basal surface with the basement membrane, a 

highly specialized extracellular matrix. This matrix covers the ECs and maintains the 

tube-like structures of the blood vessels (Kalluri 2003). Because endothelial cell tube 

formation on basement membrane replicates many steps of angiogenesis, it has been 

established as a method to screen for angiogenic and antiangiogenic factors 

(Auerbach, Lewis et al. 2003). In the past 20 years it has been demonstrated that ECs 

rapidly form capillary-like structures in vitro when plated on a reconstituted 

basement membrane extracellular matrix, such as Matrigel (Grant, Kinsella et al. 

1995). The formation of the capillary-like tubes is indeed specific to ECs and it is 

used as an in vitro angiogenesis assay to confirm the functionality of the ECs. These 

capillary-like tube structures take up acetylated-low density lipoprotein (Ac-LDL), 

which is a marker of differentiation for these cells (Arnaoutova 2009). Ac-LDL is 

taken up by macrophages and ECs via the "scavenger cell pathway" of LDL 

metabolism; the increased metabolism of Ac-LDL in ECs is used to identify these 

cells, using Ac-LDL labeled with the fluorescent probe 1,1'-dioctadecyl-3,3,3',3'-

tetramethyl-indocarbocyanine perchlorate (Dil-Ac-LDL) (Voyta, Via et al. 1984). 

 

1.1.2 ENDOTHELIAL CELL DYSFUNCTION 

Environmental risk factors (LDL levels, smoking, diabetes, hypertension, infection 

and hemodynamic forces), which accelerate cardiovascular diseases result in a 

reduced release of NO, an increase in superoxide, cytokine, prostaglandin-D2 and 

adhesion molecule production and an acceleration of the apoptotic process in the 

endothelium. This process increases inflammation and thrombosis, thus leading to 

progression of the disease. 
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In cases of endothelial damage, growth factors and chemokines are released in order 

to increase EC proliferation and motility and to reduce neointima formation, caused 

by matrix deposition. The apoptotic cells are removed by the blood stream and can 

be replaced by proliferating neighbouring cells and/or circulating EPCs which 

circulate postnatally in peripheral blood. EPCs may be able to target and repair 

damaged endothelial regions (Xu, Zhang et al. 2003, Xu 2008). In a process named 

postnatal vasculogenesis EPCs may be recruited from the bone marrow and target 

sites of active neovascularisation in ischemic hindlimbs or myocardium, tumour 

vasculature and damaged corneas (Asahara, Masuda et al. 1999).  

However, the proliferative capacity of the endothelium is thought to be low, due to 

the presence of senescent cells. Moreover these cells are thought to be unable to 

produce the required amounts of NO, which together with low proliferative capacity 

facilitates the inflammatory response, ultimately leading to the formation of 

atherosclerotic plaques (de Nigris, Lerman et al. 2003). 

Endothelial dysfunction is considered the initial stage of many cardiovascular 

diseases, such as atherosclerosis. 

 

1.1.3 ENDOTHELIAL CELLS AND ATHEROSCLEROSIS 

Cardiovascular disease is the major cause of death worldwide, and current therapies 

can only delay progression of the disease (Segers and Lee 2008). The main forms of 

cardiovascular related mortality develop following atherogenesis, which is thought to 

be initiated by endothelial cell dysfunction. 

Cardiovascular diseases include arteriosclerosis, aneurysms, cerebrovascular disease, 

heart failure, coronary heart disease, myocardial infarction, hypertension and stroke.  

The most common form of arteriosclerosis is atherosclerosis, which is the primary 

cause of cerebrovascular disease and coronary heart disease. Atherosclerosis mainly 

occurs in elastic arteries causing vessel wall thickening and narrowing of the blood 

vessel lumen and loss of elasticity, followed by the ischemia of connected tissue. 

Atherosclerosis is a chronic inflammatory disease, started by endothelial dysfunction 

(Sima, Stancu et al. 2009, Sandoo, van Zanten et al. 2010). ECs dysfunction is a key 
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early event in the formation of the atherosclerotic plaque.  Atherosclerosis develops 

in specific regions of the vasculature following interactions between modified 

lipoproteins, endogenous SMCs and ECs, macrophages and immune cells and it is 

the result of multiple risk factors.   

In these atheroprone regions, ECs show increased permeability, cytokine production 

and expression of cell adhesion molecules, transcytosis of lipoproteins, secretory 

function and hyperplasia of the basement membrane (Sima, Stancu et al. 2009).  

Furthermore, in atheroprone regions ECs are sensitive to changes in blood flow, such 

as disturbed flow, which modify their morphology and signalling cascade activation 

(World, Garin et al. 2006).  

The pathogenesis of atherosclerosis can be classified into several stages, which were 

initially described by Ross in 1976. Once ECs become damaged, the activation of an 

inflammatory response induces the exposure of adhesion molecules on the apical 

surface of the endothelium; this promotes the adhesion and migration of monocytes 

which can penetrate into the subendothelial space (Figure 2 A).The penetration and 

accumulation of LDL contributes to this process leading to the formation of a fatty-

streak in the vessel. With the progress of the lesion, SMC migration, T-cell 

activation and platelet adhesion and aggregation further contribute to the process. 

The excessive uptake of oxidised LDL by macrophages, through recognition by 

scavenger receptors, results in a morphological change into a foam cell (Figure 2 B).  

Foam cells have high intracellular levels of cholesterol, which induces apoptosis, 

releasing the fatty contents into the subendothelial space and driving the formation of 

the atherosclerotic lesion. Finally, the lesion progresses with the formation of a 

fibrous cap formed from SMC-produced extracellular matrix proteins. The continued 

expansion of the lipid-filled interior leads to the formation of a necrotic core (Figure 

2 C) (Ross and Glomset 1976).  
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Figure 2 Atherosclerotic development 

Adhesion and migration of leukocytes follow endothelial cell dysfunction (A).  The initial 

development of atherosclerosis is the formation of a fatty streak upon the lumen surface, following 

platelet and leukocyte adhesion, T-cell activation and smooth muscle cell migration. Moreover, 

macrophage engulfment of oxidised LDL leads to foam cell formation (B). As atherosclerosis 

progresses, the lesion forms a fibrous cap, which narrows the lumen and a necrotic core forms (C) 

(Ross 1999).  

 

There are two types of atherosclerotic plaques: stable and unstable, due to their 

position in the vessel and composition.  Stable plaques can grow until the lumen is 

totally occluded; unstable plaques are prone to rupture following proteolytic 

degradation at the edges of the fibrous cap. This results in the formation of a 

thrombus which occludes the lumen at the site of rupture, causing ischemia and 

damage of tissue, such as myocardial infarction.  

Balloon angioplasty and stenting are routinely used in clinical practice to treat 

patients with angina pectoris or myocardial infarction. However, one of the major 

issues of stenting is restenosis, leading to the recurrence of symptoms; balloon 

inflation at high pressure and use of metallic stent struts cause EC loss with 

subsequent SMC proliferation and matrix deposition, thus originating luminal 

narrowing (Xiao, Zeng et al. 2006). It has been reported that after vascular injury 

restenosis development can be prevented through accelerated re-endothelialization 
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by mature ECs, which inhibits SMC migration, proliferation and neointima 

formation (Nowak, Karrar et al. 2004).  

In the past several years, accumulating evidence suggests that embryonic stem cells 

(ESCs), a promising source of pluripotent stem cells with unlimited growth and self-

renewal abilities, are able differentiate into ECs in vitro and in vivo (Levenberg, 

Golub et al. 2002). Understanding of the molecular mechanisms of stem cell 

differentiation into ECs might lead to definition of new methods to produce large 

number of ECs with high purity from ESCs: ESC-derived ECs can be used to treat 

damaged vessels and to avoid restenosis. However, so far still little is known about 

the EC differentiation mechanisms and the therapeutic potential of ESC-derived ECs 

in cardiovascular diseases. 

 

1.1.4 ANGIOGENESIS IN INFARCTED TISSUE 

When myocardium is deprived of blood, ischemia, infarction and myocardium 

remodelling are initiated. Following epicardial coronary artery obstruction, DNA 

synthesis in ECs and SMCs is strongly induced, indicating active neovascularisation 

(White, Carroll et al. 1992). Formation of new blood vessels is fundamental for 

oxygen and nutrient supply to the infarcted myocardium in order to sustain 

metabolism. Neovascularisation is indeed essential to develop collateral blood 

vessels able to compensate for the compromised vascular function. The infarct size, 

the amount of viable myocardium and the prognosis in patients with acute 

myocardial infarction are determined by the amount of coronary collateral blood 

vessels (Sabia, Powers et al. 1992). Recurrent myocardial ischaemia may play an 

active role in inducing EC proliferation essential to expand the myocardial vascular 

network (Banai, Shweiki et al. 1994). 

Angiogenesis in the infarcted tissue occurs through a complex link between 

extracellular matrix, ECs and pericytes, in response to an imbalance of angiogenic 

factors compared to angiostatic factors in the local environment (Ferrara and Alitalo 

1999, Frangogiannis, Smith et al. 2002).  
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Early release of angiogenic factors in the injured areas has been associated with 

myocardial infarction. Many studies have shown that the angiogenic factors VEGF, 

interleukin 8 (IL-8) and bFGF are rapidly induced in the ischemic myocardium and 

may induce infarct neovascularisation (Kukielka, Smith et al. 1995, Lee, Wolf et al. 

2000).  

VEGF is a secreted growth factor that is angiogenic in vivo and specifically targets 

vascular ECs  (Houck, Ferrara et al. 1991). VEGF expression has been shown to be 

increased in vitro in myocardial cells in hypoxia and by myocardial ischemia in vivo; 

indeed VEGF is a likely mediator in the myocardial neovascularisation induced by 

ischemia (Banai, Shweiki et al. 1994). 

Use of angiogenic growth factors to promote new collateral vessel formation in the 

ischemic tissues is now a very exciting frontier of cardiovascular medicine (Ferrara 

and Alitalo 1999, Frangogiannis, Smith et al. 2002). One of the initial attempts in 

this direction was made through the delivery of VEGF recombinant protein in 

patients with coronary artery disease. However, this procedure was not really 

effective due to half-life of VEGF-A in vivo, insufficient myocardial uptake after 

coronary infusion and de-sensitization of chronically ischemic tissues to VEGF 

treatment. Therefore, the next step was trying to deliver VEGF-A gene directly to the 

ischemic tissues. Although the outcome of the clinical trials showed an indication of 

functional improvement in myocardial perfusion and cardiac function, in particular 

at early time points after treatment, the efficiency of naked DNA uptake by muscle 

and cardiac cells was still very low (Giacca and Zacchigna 2012). 

Indeed, there are still many issues related to local delivery of growth factors in the 

infarcted tissues to induce neovascularisation; the aim of this study is to develop a 

differentiation protocol based on the use of the angiogenic growth factor VEGF, to 

induce the differentiation of pluripotent cells into ECs able to heal the damaged 

ischemic tissues when locally delivered. 
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1.1.5 TISSUE ENGINEERING AND VASCULAR GRAFTS 

Atherosclerosis and stenosis are phenomena that lead to the narrowing of a blood 

vessel and are the cause of several cardiovascular diseases, including myocardial 

infarction. One approach for the treatment of arterial stenoses is the application of a 

vascular bypass performed using the patient’s own saphenous vein or mammary 

artery. When natural vessels are not available, due to concomitant vascular 

complications or earlier procedures, alternative grafts need to be developed. The 

challenge of creating tissue engineered graft (artificial or from decellularized natural 

vessels) is to obtain a result with the mechanical and anti-thrombotic properties of 

the natural vessel, in particular in the case of small diameter vessel (<6mm). 

The concept of tissue engineering is based on three essential components: cells, 

which can either be seeded in vitro or mobilized in vivo; scaffolds, onto which the 

extracellular matrix is organized and signals, which can be classified as humoral and 

mechanical (Bell 1991) (Figure 3). 

An ideal cell source for vascular tissue engineering should be easy to isolate and 

expand in culture; it should be able to differentiate into functional vascular cells and 

be non-immunogenic for recipients. Recent studies showed that adult stem cells, 

ESCs and induced pluripotent stem cells (iPSCs) could be used as a source for 

vascular tissue engineering since they show all the above mentioned characteristics 

(detailed description follows). 

However, there are still limitations in the use of synthetic vascular grafts, such as 

thrombogenicity, risk of infection and lack of growth potential. The first clinical trial 

using tissue engineered vascular grafts by seeding autologous bone marrow-derived 

mononuclear cells onto biodegradable tubular scaffolds has been recently performed; 

approximately 16% of grafts within the first seven years after implantation of this 

tissue engineered vascular grafts showed stenosis, an abnormal narrowing in the 

blood vessel (Naito, Shinoka et al. 2011). 

Despite the numerous studies conducted on ESC differentiation into vascular 

lineages, limited studies have used vascular cells derived from ESC as a source for 

vascular grafts in vitro. In 2003, Shen and his colleagues implanted small diameter 

http://en.wikipedia.org/wiki/Blood_vessel
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tissue engineered vascular grafts (3mm) subcutaneously into nude mice by seeding 

SMCs from rabbit arteries onto a biodegradable polymer scaffold wrapped around a 

silicon tube. After 8 weeks from implantation the graft was retrieved and silicon tube 

removed. Then, ECs derived from mouse ESCs were seeded onto the lumen of the 

graft to form an intimal layer, and the graft was re-implanted subcutaneously for a 

further 5 days. Histological and immunohistochemical staining of this tissue 

engineered graft showed ESC-derived ECs lining the intimal surface and the 

presence of SMCs and collagen in the wall, resembling a vascular structure. Indeed, 

ECs differentiated from mouse ESCs can be used as seed cells for endothelium 

lining in tissue engineered blood vessels (Shen, Tsung et al. 2003). However, this 

tissue engineered vascular graft has not been tested yet in vivo by implanting it into 

the circulatory system; therefore, the mechanical and functional properities of the 

graft still remain to be elucidated. 

In one of the most recent studies, sheets created from iPSC-derived vascular cells 

were used as an alternative and attractive source for tissue engineered vascular grafts 

(Hibino, Duncan et al. 2012). 
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Figure 3 The basic concept of tissue engineering 

Three essential components are required for the construction of tissue engineering grafts: cells, 

biodegradable scaffold onto which the extracellular matrix is organized to support the neotissue and 

signals such as cytokines, chemokines, gowth factors and mechanical forces such as shear stress, 

required for the formation of an organized tissue (Naito, Shinoka et al. 2011). 

 

 

Following the initial tissue engineering techniques developed, recent studies have 

been trying to improve re-endothelialisation of vascular scaffolds using autogenous 

cells in order to create a tissue engineered vessel with autogenous ECs and SMCs. 

However, the possibility of isolating adequate numbers of functional ECs or SMCs 

from patients with vascular disease is often not possible.  

Developing tissue engineered vascular grafts is now a major challenge for the future 

of medicine. Clinical research studies and innovation of tissue engineering 

techniques, combined with the emerging iPSC technology may represent the future 

of regenerative medicine.  
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1.2 SOURCES OF ENDOTHELIAL CELLS 

 

Recently, the mechanisms involved in the maintenance of endothelial layer integrity 

have become an important focus of research due to their importance in the 

pathophysiology of the vessels. Furthermore, new strategies have been developed to 

allow the isolation, culture and differentiation of cells that can contribute to vascular 

repair (Kirton and Xu 2010). However, current cell transplantation therapies devised 

for the treatment of cardiovascular diseases are hampered by the lack of a viable 

source of committed cells. Indeed, fully mature ECs isolated from patients’ blood 

vessels have limited proliferation and expansion capabilities. Hence, alternatives 

such as the use of ESCs or iPSCs, which have an unlimited self-renewal capability, 

are increasingly sought after for tissue regeneration in the damaged areas.  

In order to fulfil the potential of ESCs or iPSCs as a platform for treating 

cardiovascular diseases, an understanding of their roles and functional biology in 

vasculogenesis is pivotal. As such, the following sections will discuss current studies 

focusing on ESCs and in particular on iPSCs as model systems, and the relevant 

mechanisms that are involved in their differentiation.  

 

1.2.1 EMBRYONIC STEM CELLS (ESCs) 

Embryonic stem cells (ESCs) are derived from the inner mass of the embryonic 

blastocysts and can be cultured in vitro under the appropriate conditions in order to 

maintain their original pluripotency. This pluripotent ability has attracted the interest 

of numerous researchers, both to expand the fundamental understanding of 

developmental biology and for their potential application in regenerative medicine. 

Isolation of ESCs was firstly reported in 1981 from the inner cell mass of mouse 

E3.5 blastocysts (Evans and Kaufman 1981). In in vitro culture, these cells were 

shown to maintain their proliferative and undifferentiated state, growing on a feeder 

layer of mouse embryonic fibroblasts (MEF) or in medium containing leukaemia 

inhibitory factor (LIF) (Conner 2001). 
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Pluripotency is the ability of a cell to differentiate into all the cell types that make up 

an individual. Pluripotency can be tested in vitro, with the capacity of forming 

embryoid bodies, three-dimensional aggregates that are able to recapitulate the three 

germ layers. In vivo, cells can be injected into a blastocyst to assess whether they 

will be able to contribute to the development of a chimeric mouse and be transmitted 

through the germ line. Furthermore, proof of pluripotency can be obtained by 

subcutaneously injecting the cells in immunocompromised mice and monitoring for 

the formation of teratoma, a tumour composed by all three germ layers (Figure 4).  

 

 

 

Figure 4 In vitro and in vivo tests for pluripotency 

a) Embryoid body formation. Embryonic stem cells (ESCs) are isolated from the inner cell mass of a 

blastocyst and cultured in suspension in semisolid media without Leukemia inhibitory factor. After 

eleven days, the cells spontaneously differentiate to form three-dimensional multicellular aggregates 

called embryoid bodies (EBs), which comprise the three embryonic germ layers. b) Production of 

chimeric mice. Labelled or mutated ESCs are injected into the diploid blastocyst of a wild type 

mouse. F0 generation chimeric mice are only partially derived from the modified ESCs and are bred 

to obtain F1 generation in which some of the mice are derived from the labelled ESCs c) Teratoma 

formation. ESCs subcutaneously injected into immunodeficient mice spontaneously originate tumours 

comprised of all three germ layers, called teratoma. 
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1.2.1.1 ESC SPECIFIC MOLECULAR NETWORKS  

As mentioned above, pluripotency is the key characteristic of stem cells in general 

and ESCs in particular. Understanding the network of factors that regulates this 

process has been the crucial focus of a large number of recent papers. In ESCs, 

pluripotency is maintained by a transcription factor network, which activates 

pluripotency-associated genes, including themselves, while repressing the 

developmentally regulated genes (Yeo and Ng 2013).  

LIF, a member of the IL-6 family, is a supplement that is necessary to maintain 

ESCs in an undifferentiated state in the absence of a feeder layer. On the cell surface, 

LIF binds to a two-part receptor complex that consists of the LIF receptor and the 

gp130 receptor. This binding leads to the phosphorylation of a signal transducer and 

to the activation of the latent signal transducer and activator of transcription 3 

(STAT3). This event is necessary for the maintenance of a proliferative state in 

mouse ESCs. Activated STAT3 translocates to the nucleus to activate a variety of 

downstream genes like Krüppel-like factor 4 (KLF4), which is involved in the 

regulation of numerous processes including proliferation and differentiation, and 

cMyc, a potent oncogene known to strongly promote proliferation (Figure 5a). 

Src homology-2 domain (SH2)-containing tyrosine phosphatases (SHP-2) and 

extracellular-signal-regulated kinase (ERK) are both components of a signal-

transduction pathway that counteracts the proliferative effects of STAT3 activation, 

influencing the self-renewal of mouse ESCs. SHP-2 is a tyrosine phosphatase that 

interacts with the intracellular domain of the gp130 receptor, and ERK is one of 

several enzymes activated when the gp130 receptor and other cell-surface receptors 

are stimulated. If ERK and SHP-2 are active, they inhibit ESC self-renewal 

promoting cell differentiation (Figure 5b). 
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Figure 5 Mechanisms of ESC self renewal and differentiation 

a) Promotion of ESC self-renewal via LIF-dependent activation of STAT3. Leukemia inhibitory 

factor (LIF) stabilizes the binding between Leukemia inhibitory factor receptor (LIFR) and 

glycoprotein 130 (gp130) cytokine receptor resulting in the activation of receptor-associated Janus-

associated (JAK) tyrosine kinases. This causes the recruitment, phosphorylation and dimerization of 

the transcription factor signal transducer and activator of transcription 3 (STAT3). When the dimers 

translocate to the nucleus they can regulate the expression of self-renewal genes. b) Ras/MEK/ERK 

signalling pathway induces cell differentiation. The recruitment on cell-surface receptors, such as 

gp130 of a complex containing the growth factor receptor-bound protein 2 (Grb2) adaptor and sos 

guanine-nucleotide-exchange factor, is mediated by src homology-2 domain (SH2)-containing 

tyrosine phosphatase (SHP-2). Subsequent activation of rat sarcoma (RAS) initiates a cascade of 

transphophorylations involving Raf and MAPK kinase (MEK) kinases with the final activation of and 

extracellular-signal-regulated kinase (ERK). Active ERK promotes ESC differentiation after 

phosphorylating cytoplasmic targets and undergoing nuclear translocation. 

 

 

Other important transcription factors involved in the maintenance of pluripotency 

are: sex determining region (SRY) Y-box 2 (Sox2), homeobox protein Nanog 

(Nanog) and octamer-binding transcription factor 4 (Oct4).  
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Sox2 gene, a member of the SOX gene family, encodes for a transcription factor, 

which is initially expressed in the blastocyst inner cell mass and, in later stages of 

development, in the germ cells and in the ectoderm. After gastrulation, Sox2 

expression is detectable in the developing neural tube throughout the early 

neuroepithelium (Wood and Episkopou 1999) and is probably induced by the 

activity of some regionally restricted enhancer elements (Zappone, Galli et al. 2000). 

In vitro, Sox2 is essential for maintaining pluripotency and it has been shown that a 

reduction of its expression induces mouse ESCs to differentiate into cells of the 

trophoectoderm lineage (Masui, Nakatake et al. 2007). 

Nanog is a homeobox-containing transcription factor expressed in the inner cells of 

the morula, prior to blastocyst formation and in the inner cell mass of the blastocyst 

up until the implantation stage (Chambers, Colby et al. 2003). Nanog expression is 

still detectable in the proximal epiblast at embryonic day 6 and in the epiblast as the 

development progresses (Hart, Hartley et al. 2004). In vitro, overexpression of 

Nanog in differentiation-inducing conditions prevents ESCs from exiting their 

pluripotent and self-renewing stage (Chambers, Colby et al. 2003). 

Oct4 is expressed in the mouse zygote, and is required throughout blastocyst 

development to establish and maintain the pluripotency of the inner cell mass and the 

epiblast. Oct4 is also expressed in the primordial and mature germ cells of mice 

(Schöler, Dressler et al. 1990). Oct4 expression in vitro is required to maintain the 

pluripotent, undifferentiated state of ESCs and its expression level is very important 

in the developmental program of mouse ESCs, making the protein a candidate 

"master regulator" of ESCs pluripotency. Indeed, Oct4 regulates gene expression by 

acting in synergy with Sox2 and binding to the Oct-Sox enhancer. This results in 

activation of pluripotency genes and silencing of differentiation-associated genes 

(Rodda, Chew et al. 2005). Furthermore, the binding of Oct4/Sox2 to the proximal 

region of Nanog promoter enhances its expression. LIF, with its downstream 

effectors STAT3 may be also involved in the regulation of Nanog gene expression 

(Pan and Thomson 2007) (Figure 6). 

Therefore, the pluripotency of ESCs is externally regulated through several 

molecules such as LIF, whose signalling pathway activates transcription factors in 

the nucleus. The transcriptional activity of Klf4, cMyc and Nanog, along with Oct4 
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and Sox2, maintains the unlimited proliferative capacity and differentiation potential 

of the cells.  

 

 

Figure 6 Regulation of Nanog expression in the ESC transcriptional network of pluripotency 

Octamer-binding transcription factor 4 (Oct4) regulates gene expression by acting in synergy with sex 

determining region (SRY) Y-box 2 (Sox2) and binding to the Oct-Sox enhancer; the binding of 

Oct4/Sox2 to the proximal region of homeobox protein Nanog (NANOG) promoter enhances its 

expression. Leukemia inhibitory factor (LIF), with its downstream effector signal transducer and 

activator of transcription 3 (STAT3), may be also involved in the regulation of Nanog gene 

expression. 

 

 

1.2.1.2 ESCs DIFFERENTIATION INTO MESODERMAL LINEAGE 

Recently ESCs have been successfully differentiated into mesoderm-derived lineages 

using specific stimulations with different substrates and growth factors. For instance, 

mouse ESCs under optimised culture conditions and following serum induction have 

been shown to differentiate into hematopoietic cells (Keller 1995). Moreover, mouse 

ESCs plated on matrigel originated embryonic bodies and differentiated into blood 

vessels spontaneously (Nakagami, Nakagawa et al. 2006). Furthermore, ESCs have 

been differentiated recently into ECs and SMCs (Levenberg, Golub et al. 2002, Xiao, 

Zeng et al. 2007), vascular progenitors (Yamashita, Itoh et al. 2000) and 

cardiomyocytes (Kehat, Kenyagin-Karsenti et al. 2001, Yamashita, Takano et al. 
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2005), offering a wide range of cell lineages for clinical transplantation and 

therapeutic applications, which will be discussed in one of the following sections 

(1.4). 

It has also been shown that CD34
+
 cells isolated from differentiated hESCs act as 

vascular progenitor cells capable of originating both ECs and SMCs (Hill, 

Obrtlikova et al. 2010).  

Generation of vascular ECs, SMCs and cardiomyocytes from ESCs offers a 

prospective source for cardiovascular tissue repair (Gepstein 2002). 

Differentiation potential of stem cells into mesodermal lineages will be better 

discussed in some of the following sections, with a particular focus on iPSCs 

differentiation and the different stimuli inducing stem cell differentiation. 

 

1.2.2 ADULT STEM CELLS 

Adult stem cells, also known as somatic stem cells, are multipotent stem cells, found 

throughout the body after development in specific niches, that multiply by cell 

division to replenish dying cells and regenerate damaged tissues (Yin and Li 2006). 

Scientific interest in adult stem cells is due to their self-renewability and to their 

potential to differentiate into one or more cell types of the organ from which they 

originate. Unlike embryonic stem cells, the use of adult stem cells for therapeutic 

application does not raise ethical issues, since these cells are derived from adult 

tissue samples without the need for destroying human embryos.  

Adult stem cells can be divided into three categories: bone marrow, circulating and 

tissue-resident stem cells. The first application of adult stem cell therapy was 

discovered in the 1950s, with the first bone marrow transplantation study. Stem cells 

present in the bone marrow can be used to replenish the depleted tissue and are able 

to produce all the derived populations. Subsequent studies isolated two main stem 

cell populations in the bone marrow: the hematopoietic stem cells, which form all the 

types of blood cells in the body, and the bone marrow stromal stem cells (also called 

mesenchymal stem cells), which can generate bone, cartilage, fat, cells that support 

the formation of blood, and fibrous connective tissue (Nirmalanandhan and 

http://en.wikipedia.org/wiki/Somatic_cell
http://en.wikipedia.org/wiki/Stem_cells
http://en.wikipedia.org/wiki/Cell_differentiation
http://en.wikipedia.org/wiki/Cell_%28biology%29
http://en.wikipedia.org/wiki/Cell_division
http://en.wikipedia.org/wiki/Cell_division
http://en.wikipedia.org/wiki/Biological_tissue
http://en.wikipedia.org/wiki/Cell_type
http://en.wikipedia.org/wiki/Organ_%28anatomy%29
http://en.wikipedia.org/wiki/Embryo
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Sittampalam 2009). They have been used for the therapy of blood disorders, such as 

leukemia, multiple myeloma and lymphoma, and disorders with defective genes such 

as severe combined immune deficiency (Papewalis, Topolar et al. 2013). Beside the 

reconstitution of host bone marrow, many other regenerative medicine applications 

of these cells have been progressively discovered. Mesenchymal stem cells have 

been differentiated in vitro into functional cardiomyocytes offering a great potential  

for therapeutic applications in myocardial infarction  (Xu, Zhang et al. 2004). 

Moreover, mesenchymal stem cells have been used in the effective cell therapy of 

the infarcted heart (Pittenger and Martin 2004). Furthermore, mesenchymal stem 

cells have been transplanted in a model of limb ischemia, after artery occlusion and 

their angiogenic potential has been tested, compared to a control cell population 

composed of bone marrow-derived mononuclear cells. Blood flow recovery was 

improved by both cell types and mesenchymal stem cells were able to differentiate 

into ECs and SMCs and to contribute to the sprouting of collateral vessels (Iwase, 

Nagaya et al. 2005). 

Gradually, it has become evident that adult stem cells play an important role in the 

maintenance and repair of tissues and organs during the life span of the individual 

(Nirmalanandhan and Sittampalam 2009, Teo and Vallier 2010).  

Progenitor cells are found in many organs and are unipotent or multipotent with 

limited plasticity. Even though their self-renewability is highly limited, progenitor 

cells are able to repair injury in tissues where they reside. There are many types of 

progenitor cells so far identified, such as osteoblasts and chondrocytes, satellite cells 

in muscles, angioblasts, bone marrow, cardiac, stromal cells and the intermediate 

progenitor cells in the subventricular zone of the brain (Nirmalanandhan and 

Sittampalam 2009).  

Bone marrow cells are recruited to the site of injury and participate in the healing of 

several organs. During the reparative process, progenitor cells are mobilized from 

the bone marrow into the circulation by directed migration along growth 

factor/cytokine gradients, to differentiate into a more mature phenotype and integrate 

in the nascent vasculature. The most widely studied subpopulation of circulating 

progenitor cells so far is represented by the EPCs, which have been shown to offer a 

great potential for angiogenesis applications and atherosclerosis treatment. 

javascript:glosspop('mesenchymal')
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EPCs are derived from the bone marrow and appear to be implicated in the repair 

and maintenance of the vasculature through re-endothelialisation and 

neovascularisation (Shi, Rafii et al. 1998). It has been shown that the number and 

function of circulating EPCs decrease in response to risk factors associated with 

coronary artery disease (CAD), such as age, diabetes and high levels of blood 

cholesterol, potentially contributing to increased cardiac risk, reduced angiogenic 

capacity, and impaired cardiac repair effectiveness; however, the mechanisms 

underlying this process are not yet fully understood (Vasa, Fichtlscherer et al. 2001). 

Putative circulating EPCs were  initially described as CD133
+
CD34

+
VEGFR2

+
 or 

CD34
+
VEGFR2

+
 (Asahara, Murohara et al. 1997). EPCs were originally 

characterized as a circulating population carrying the marker CD34 and coexpressing 

hematopoietic antigens (such as CD45). During culture/expansion, EPCs stop 

expressing CD45 (leukocyte common antigen) and start expressing EC markers, 

such as Factor VIII, CD31, UEA-1 (ulex eureopaeus agglutinin-1), eNOS, E-selectin 

and become able to incorporate Dil-labeled acLDL. EPCs injected in a non-

immunocompetent mice model of limb tumour were shown to successfully integrate 

into nascent capillaries (Asahara, Murohara et al. 1997). The therapeutic potential of 

EPC transplantation has been exploited by many studies conducted in mouse and 

rabbit hind limb ischemia models (Takahashi, Kalka et al. 1999, Kalka, Masuda et al. 

2000). Moreover, EPCs expanded ex vivo have been reported to incorporate into foci 

of myocardial neovascularization (Kawamoto, Gwon et al. 2001). 
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Figure 7 Niches of adult stem cells 

Adult stem cells have been identified in specific niches in the human body, such as in the bone 

marrow, the heart and the brain. These cells show self-renewability and the potential to differentiate 

into all the cell types of the organ from which they originate. 

http://www.kokhucredernegi.org.tr/eng/kok_hucre/eriskin.html 

 

Adult stem cells have been shown to be present in many different adult tissues. For 

instance, vascular progenitor cells such as Sca-1
+
 have been shown to be abundant in 

the adventitia  (Hu, Zhang et al. 2004) and perivascular progenitor cells have been 

identified in the human adult vena saphena (Campagnolo, Cesselli et al. 2010); adult 

stem cells can be also found in the skin (Bickenbach and Grinnell 2004), the liver 

(Kung and Forbes 2009), the muscle (Martin, Russell et al. 2006), the lung 

(Neuringer and Randell 2006) and the heart (Beltrami, Barlucchi et al. 2003).  

Despite the success in the use of stem cells from the bone marrow, adult stem cells 

clinical use is still restricted because of the limited differentiation potential of these 

cells. Furthermore, the identification of adult stem cells in the human body and 

indeed their characterization is still challenging (Teo and Vallier 2010). In addition, 

the therapeutic potential of somatic stem cells might be reduced in pathological 

conditions, since they might be impaired by the disease itself. Finally, using 

http://en.wikipedia.org/wiki/Cell_type
http://en.wikipedia.org/wiki/Organ_%28anatomy%29
http://www.kokhucredernegi.org.tr/eng/kok_hucre/eriskin.html
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endogenous stem cells in genetic diseases is not likely to be beneficial, since the 

stem cells would still produce progeny carrying the same phenotype (Teo and Vallier 

2010).  

Mobilization of endogenous somatic stem cells represents the ultimate non-invasive 

objective of regenerative medicine. It has been recently demonstrated that 

stimulation with granulocyte colony-stimulating factor (G-CSF) is able to mobilize 

hematopoietic progenitor cells from the bone marrow (Levesque, Hendy et al. 2003). 

Moreover, populations of progenitor cells can be selectively mobilized from the bone 

marrow as a response to different factors in various pathologies (Pitchford, Furze et 

al. 2009).  

A better environment should be created in order to facilitate a therapeutic use of 

adult stem cells, for instance through the activation and mobilization of resident 

progenitor cells from their niches. Cytokines may be used to mimic the physiological 

situation in which BM cells are mobilized into the circulation, after stimulation from 

damaged tissues. Moreover, in a the study conducted on adult epicardium-derived 

progenitor cells, it has been shown that the actin monomer-binding protein thymosin 

beta4 (Tβ4) is able to induce and revert these resident progenitor cells to their 

embryonic phenotype, giving rise to endothelial cells and vascular smooth muscle 

cells ex vivo. Indeed, through an “endogenous repair,”  Tβ4 promotes cardiac 

neovascularization to sustain the myocardium after ischemic damage (Smart, Risebro 

et al. 2010). 

 

1.2.3 INDUCED PLURIPOTENT STEM CELLS (iPSCs) 

The knowledge of the complex network of transcription factors cooperating to 

maintain the pluripotent state of ESCs has recently been exploited in order to induce 

somatic cell reprogramming. In the past, techniques such as somatic cell nuclear 

transfer have proved successful in inducing cell de-differentiation; however, there 

are technical and ethical issues in applying this type of approach to human cells, for 

example oocyte donor-associated risk of transmissible diseases (Yamanaka 2007).  

In a landmark study, Yamanaka and colleagues showed the generation of induced 

pluripotent stem cells (iPSCs), following retroviral overexpression of four 
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transcription factors, Oct4, Sox2, Klf4, and c-Myc (OSKM) in mouse fibroblasts 

(Takahashi and Yamanaka 2006).  

However, iPSCs could not produce chimeric mice and there were major differences 

between their global gene expression pattern and that of ESCs. Indeed, in 2007 a 

new method to generate mouse iPSCs was described; resultant cells showed  

phenotypes more closely related to ESCs and were able to generate chimeric mice 

and be transmitted through the germline (Meissner, Wernig et al. 2007, Okita, 

Ichisaka et al. 2007, Wernig, Meissner et al. 2007). 

Hence, reprogrammed cells, like ESCs, exhibited unlimited proliferation and 

satisfied all the pluripotency standard assays, such as in vitro differentiation into the 

three germ layers, teratoma formation, contribution to chimeric mice, germline 

transmission (Maherali and Hochedlinger 2008), and tetraploid complementation 

(Woltjen, Michael et al. 2009).  

Moreover, as iPSCs may be obtained from somatic cells, they offer the potential of 

generating patient-specific cell lines and consequently will overcome the immune 

rejection response. Furthermore, being generated from adult cells, iPSCs are not 

subjected to the ethical considerations related to ESCs.  
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Figure 8 Generation of iPSCs 

iPSCs are generated from adult fibroblasts by introducing a cocktail of reprogramming factors. 

Reprogrammed cells are pluripotent and if cultured with different stimuli can originate cells from the 

three germ layers, such as blood cells, gut cells or cardiac cells. 

http://learn.genetics.utah.edu/content/tech/stemcells/quickref/ 

 

Following the publication of the protocol for iPSC generation, a number of research 

groups focused on demonstrating that iPSCs can originate from different types of 

somatic cells derived from all three germ layers: neuronal progenitor cells and 

keratinocytes from the ectoderm (Aasen, Raya et al. 2008, Shi, Tae Do et al. 2008), 

progenitor B cells from the mesoderm (Hanna, Markoulaki et al. 2008) and stomach 

cells and hepatocytes from the endoderm (Aoi, Yae et al. 2008). Furthermore, iPSCs 

were derived from human cells using either the OSKM factors (Takahashi, Tanabe et 

al. 2007, Park, Zhao et al. 2008) or Oct4, Sox2, Nanog and lin-28 (Yu, Vodyanik et 

al. 2007). 

The availability of pluripotent stem cell populations and the understanding of the 

mechanisms that maintain the undifferentiated state, provide a powerful tool to drive 

stem cell differentiation into therapeutically interesting cell types, such as ECs. In 

order to design an efficient protocol of differentiation, it is fundamental to 

http://learn.genetics.utah.edu/content/tech/stemcells/quickref/
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understand the physiological stimuli involved in EC maturation and proliferation 

during development and adulthood. 

 

1.2.3.1 iPSC DIFFERENTIATION INTO MESODERMAL LINEAGES 

As mentioned before, iPSCs are able to differentiate towards cells derived from all 

the three germ layers, such as pancreatic beta-cells from the endoderm (Zhang, Jiang 

et al. 2009), and several neuronal cell types from the ectoderm (Wernig, Zhao et al. 

2008). In particular, in this work we will focus on iPSC differentiation towards 

mesodermal lineages and specifically endothelial cell lineage. 

iPSCs are believed to possess the same characteristics and differentiation potential of 

ESCs. Studies to confirm this statement are of extreme importance and will help to 

elucidate more clearly the degree of similarity between those two cell types. In 

regards to the process of endothelial differentiation, the protocols applied and the 

results obtained so far seem to be comparable. A recent study elucidated the features 

of the directed differentiation of human iPSCs into vascular ECs and mural cells, 

revealing that the properties of human iPSC differentiation into vascular cells are 

nearly identical to those observed in human ESCs (Taura, Sone et al. 2009). 

To initiate the differentiation process, iPSCs are cultured on collagen IV, an 

extracellular matrix protein, which has been reported to direct ESC differentiation to 

mesodermal lineages, including SMCs, ECs, and hematopoietic cells, in both mouse 

(Nishikawa, Nishikawa et al. 1998, Schenke-Layland, Angelis et al. 2007) and 

human cultures (Gerecht-Nir, Ziskind et al. 2003). Fluorescence-activated cell sorter 

(FACS) analysis of collagen IV differentiated iPSCs showed the presence of Flk1
+
 

progenitor cells which, when isolated and cultured in differentiation promoting 

conditions, differentiated into functional SMCs, ECs and spontaneously beating 

cardiomocytes, with concomitant decrease of stem and progenitor cell gene 

expression (Figure 9) (Narazaki, Uosaki et al. 2008, Schenke-Layland, Rhodes et al. 

2008). 

Additionally iPSCs monolayers have been shown to differentiate into functional 

SMCs, after treatment with retinoic acid for 8 days (Xie et al., 2009). 
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Figure 9 Procedure and time course of mESC and iPSC differentiation into ECs and 

cardiomyocytes 

When undifferentiated induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs) were 

cultured for 4.5 days on collagen IV-coated dishes in differentiation medium, without leukemia 

inhibitory factor (LIF), a mixed population of cells containing vascular progenitor cells arose. 

Vascular endothelial receptor 2 (Flk1
+
) putative vascular progenitor cells were sorted by flow 

cytometry and plated onto collagen IV dish or OP9 stroma cells. Flk1
+
 cells differentiated for one day 

(Flk-d1) or four and five days (Flk-d4-5) give rise respectively to a mixed population of endothelial 

cells (ECs) and cardiomyocytes. Fluorescence-activated cell sorter (FACS) analysis and 

immunostaining were performed at Flk-d3 and Flk-d5 to evaluate the differentiation of ECs and 

cardiomyocytes; electrophysiological studies were carried out on cardiomyocytes at Flk-d8. Adapted 

from (Narazaki, Uosaki et al. 2008). 

 

 

In one particular study, cells derived from Flk1
+
 progenitors were thoroughly 

characterized. Amongst the populations obtained, the authors identified mural cells 

(vascular SMCs and pericytes), lymphatic, vascular ECs (arterial and venous ECs) 

and a novel population of cardiac progenitor cells. From cardiac progenitor cells, a 

population of self-beating cardiomyocytes arose as a mix of atrial, ventricular, 

pacemaker and conduction system cells of the heart (Figure 10) (Narazaki, Uosaki et 

al. 2008). 
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Figure 10 Systematic induction of different cardiovascular cell types from common progenitor 

Flk1
+
 of mouse iPSCs 

A population of common progenitor cells positive for Flk1
+
 and endothelial cadherin (E-cadherin) is 

selected from pre-differentiated mouse induced pluripotent stem cells (iPSCs), initially positive for 

stage specific embryonic antigen (SSEA1
+
). Flk1

+
 cells cultured in presence of vascular endothelial 

growth factor (VEGF) give rise to hemangioblasts-like precursors able to give rise to Flk1
+
 and VE-

cadherin
+
 ECs and blood cells (Flk1

- 
and CD45

+
). Furthermore, Flk1

+
 cells give rise to smooth muscle 

actin positive (SMA
+
) mural cells in presence of platelet-derived growth factor BB (PDGF-BB). On 

the other hand, Flk1
+
 cells cultured on OP9 stroma cells differentiated into a cardiac progenitor cells 

population, positive for Flk1 and chemokine receptor type 4 (CXCR4
+
), that can then be further 

differentiated into cardiomyocytes, which are negative for Flk1 and positive for -myosin heavy 

chain (MHC
+
) and homeobox protein Nkx2.5.  Adapted from (Narazaki, Uosaki et al. 2008). 

 

In a similar study, using collagen IV culture or EB formation, Flk1
+
 progenitor cell-

derived mouse iPSCs were differentiated into mesodermal lineages, including 

cardiovascular and hematopoietic lineages (Schenke-Layland, Rhodes et al. 2008). 

Finally, mouse iPSCs have been shown to differentiate in vitro into functional 

cardiomyocytes, which have been characterized for the expression of functional 

cardiac ion channels and hormonal regulation (Kuzmenkin, Liang et al. 2009).  
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1.3 STIMULI REGULATING ENDOTHELIAL 

DIFFERENTIATION 

Initial methods to generate vascular progenitors from ESCs tried to mimic the in vivo 

pattern of blood vessel formation. In terms of differentiation both cytokines and 

mechanical forces are able to initiate a signal cascade leading to progenitor cell 

acquisition of phenotypic features typical of ECs.  

 

1.3.1 VASCULAR ENDOTHELIAL GROWTH FACTOR (VEGF) 

Both vasculogenesis and angiogenesis are regulated by the actions of a series of 

growth factors, such as fibroblast growth factor–2 (FGF-2), vascular endothelial 

growth factor (VEGF) and, in the adult, platelet-derived growth factor (PDGF) and 

transforming growth factor beta (TGF-β).  

VEGF is an EC-specific mitogen that plays an important role in many of the events 

necessary for angiogenesis (Connolly 1991) and other EC functions, such as  

permeability, vascular tone and production of vasoactive molecules (Zachary 1998). 

The VEGF gene is located on the short arm of chromosome 6 and it is composed of 

eight exons and seven introns (Tischer, Mitchell et al. 1991, Vincenti, Cassano et al. 

1996). Hypoxia-mediated control of gene transcription and alternative splicing 

regulate the transcription of VEGF gene and the production of differing isoforms 

(Giles 2001). VEGF transcript is subjected to alternative splicing from exons 5 to 8, 

leading to the production of different isoforms which show variable diffusibility 

depending on their length: VEGF121, VEGF165, VEGF189  represent the main forms 

(Tischer, Mitchell et al. 1991). Exon 6, which is not present in VEGF121 and 

VEGF165, together with exon 7 provide heparin-binding affinity; exon 8, which is 

present in all the active isoforms, is required to stimulate mitosis (Ferrara 2004). The 

smaller isoform VEGF121, which lacks exons 6 and 7, is freely diffusible, whereas 

the longer isoforms are highly basic and remain cell-associated (Houck, Ferrara et al. 

1991). VEGF165, which lacks only exon 6, shows intermediary properties: it is 

largely soluble, with a distinct cell-associated fraction (Houck, Ferrara et al. 1991). 

VEGF165 is the prevailing isoform, and is most biologically active in the 

physiological state (Ferrara 2004). VEGF regulates key cellular events during 



51 

 

vasculogenesis, supporting EC proliferation and motility. In particular, low doses of 

VEGF induce EC proliferation while high doses enhance EC motility. This dose-

dependent effect can also explain the abnormal blood vessel formation and lethality 

of embryos lacking only one single VEGF allele (heterozygous VEGF
+/-

). As 

expected, the development of blood vessels is further impaired in homozygous 

VEGF-deficient embryos (VEGF
-/-

) (Carmeliet, Ferreira et al. 1996, Ferrara, Carver-

Moore et al. 1996).  

VEGF exerts its action binding to three different receptors: VEGFR-1, also known as 

fms-related tyrosine kinase (Flt1), VEGFR-2 or kinase insert domain receptor 

(KDR), the human homolog of fetal liver kinase (Flk1), and VEGFR-3 (Flt4) 

(Neufeld, Cohen et al. 1999, Ellis, Takahashi et al. 2000). Both VEGFR-1 and 2 

consist of an extracellular domain composed of seven immunoglobulin (Ig)-like 

domains, a transmembrane domain, a juxtamembrane domain, a long kinase domain 

insert in the middle of the tyrosine kinase domain and a C-terminal tail (Takahashi, 

Yamaguchi et al. 2001). VEGFR-1 can be activated by VEGF-A or placenta growth 

factor-1 in arteriogenesis. Wound healing processes and their signalling pathways 

have been characterized in human monocytes. As a result of VEGFR-1 activation 

there is an induction of chemotactic responses, with the expression of tissue factors, 

cytokines
 

and chemokines (Tchaikovski, Fellbrich et al. 2008).
 

VEGFR-2 is 

expressed in monocytes and ECs and mediates the effect of VEGF on cell motility 

(Gille, Kowalski et al. 2001), vascular permeability and proliferation (Clauss, Weich 

et al. 1996). VEGFR-2 is a major progenitor cell marker for hematopoietic and 

endothelial lineage, expressed from  the hemangioblast to mature ECs (Schatteman 

and Awad 2004). VEGFR-3 is involved in the lymphoangiogenic process and is 

homologous with the neurophilin-1 receptor (Ferrara 2000, Yancopoulos, Davis et 

al. 2000). Study of knock-out animals demonstrated that not only VEGF, but also its 

receptors 1 and 2 are fundamental in the development of the fetal vasculature. As it 

appeared from the knock-out animal’s phenotype, these two receptors mediate 

different responses: Flk-1 null mutant mice showed an impaired endothelial and 

hematopoietic cell development (Shalaby, Rossant et al. 1995) and Flt1 knock-out 

resulted in an overgrowth of ECs and disorganization of blood vessels (Fong, 

Rossant et al. 1995). 
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1.3.1.1 ROLE OF VEGF IN EC DIFFERENTIATION  

VEGF is a potent stimulus, able to drive endothelial differentiation in a large number 

of progenitor cell populations, leading to the creation of a reservoir of cells that 

could be therapeutically used to repair the endothelial monolayer and to improve 

vascular function following injury [reviewed in (Zampetaki, Kirton et al. 2008)].  

Indeed VEGF has been shown so far to be one of the most potent growth factors able 

to stimulate progenitor cell differentiation into ECs. In particular, treatment of Flk1
+
 

cells derived from ESCs with VEGF was able to induce EC differentiation 

(Yamashita, Itoh et al. 2000). Moreover, ESC-derived Flk1
+
 cells could differentiate 

into both endothelial and mural cells, after stimulation with VEGF and platelet-

derived growth factor BB (PDGF-BB) respectively, and reproduce the vascular 

organization process. To confirm this concept, Yamashita and his co-workers 

engineered mouse Flk1
+
 cells to express LacZ, and injected them into the developing 

hearts of stage 16–17 chick embryos. The -gal
+
 mouse cells populated blood 

vessels in the chicks' head, yolk sac, heart, and regions between the somites, showing 

differentiation towards ECs and mural cell lineages (Yamashita, Itoh et al. 2000). 

Indeed, Flk1
+
 cells can act as “vascular progenitor cells” in the formation of mature 

vessels offering big potential for tissue engineering of the vascular system. 
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Figure 11 The two types of blood-vessel cells arise from a common progenitor 

Blood vessels are generally composed of two cell types: while endothelial cells line the inside and 

form channels that conduct blood, smooth muscle cells cover the outside, protecting the channels 

from rupture and controlling blood flow. These two cell types have been considered to arise from 

separate precursors: endothelial cells from the angioblasts or haemangioblasts in the embryo, or from 

circulating endothelial progenitors in the adult (not shown) and smooth muscle cells and pericytes 

from a variety of progenitors. However recently it has been shown that the two types of cells that 

make up blood vessels, endothelial cells and smooth muscle cells, can develop from common vascular 

progenitors upon stimulation with vascular endothelial growth factor (VEGF) or platelet-derived 

growth factor BB (PDGF-BB) respectively  (Carmeliet 2000). 

  

 

Several years later, Flk1
+
 cells isolated from human embryonic stem cells (hESCs) 

were used to differentiate into ECs and SMCs, which not only expressed phenotypic 

makers, but were also able to contract when treated with retinoic acid and/or 

dibutyryl-cydic adenosine monophosphate (db-cAMP) (Drab, Haller et al. 1997, 

Huang, Zhao et al. 2006).  
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Moreover ECs generated from Flk1
+
 precursors were shown to organize into vessel-

like structures when grown in collagen gel suspensions or transplanted in vivo. 

Interestingly, immunofluorescence analysis showed that the tube-like structures 

obtained mimicked the organization of blood islands in the early embryo, being 

composed of endothelial (PECAM-1
+
) and mural (SMA

+
) cells and containing blood 

cells (CD45
+
 and Ter119

+
) (Yurugi-Kobayashi, Itoh et al. 2003). 

Additionally, in a study conducted in our group, stem cell antigen-1-positive (Sca1
+
) 

progenitor cells, isolated from predifferentiated ESCs were cultured in medium 

containing VEGF which led to their differentiation into a pure and functional 

population of ECs, via VEGF-induced activation of histone deacetylase 3 (HDAC3) 

(Xiao, Zeng et al. 2006). When cultured with VEGF for 21 days Sca1
+ 

progenitors 

displayed cobblestone morphology and the majority of the cells expressed high 

levels of endothelial markers (CD31, CD106, CD144, Flk1, Flt1 and vWF). These 

ESC-derived ECs were also shown to form vascular structures when mixed with 

Matrigel and subcutaneously injected in mice (Xiao, Zeng et al. 2006). Moreover, 

when Sca1
+
 cells were injected in a mouse model of femoral artery denudation 

injury, the progenitor-derived ECs were able to decrease the process of neointimal 

formation (Xiao, Zeng et al. 2006).  

In another work, hESCs isolated from 10 to 15 day old human embryoid bodies were 

dissociated and labeled with anti-human CD34 antibodies. CD34
+
 cells were then 

isolated from the cell mixture using magnetic-activated cell separation and cultured 

in endothelial growth medium supplemented with VEGF. These specific 

differentiation conditions gave rise to an homogenous endothelial-like population 

(Levenberg, Ferreira et al. 2010). Similarly, undifferentiated ESCs were cultured on 

collagen IV-coated dishes, in a medium containing fetal calf serum but no LIF. This 

induced the generation of cells of the mesodermal lineage, including Flk1
+
 cells that 

were then purified by flow cytometry sorting. When these cells were cultured with 

medium containing VEGF, sheets of ECs expressing typical markers, such as 

PECAM-1, arose (Hirashima, Kataoka et al. 1999, Yamashita, Itoh et al. 2000). 

The growing number of publications showing the centrality of the role of VEGF in 

the process of endothelial differentiation of progenitor cells prompted us to apply it 

to our differentiation system. 
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1.3.2 SHEAR STRESS  

Apart from VEGF, another potent stimulus used to induce EC differentiation is the 

mechanical force of shear stress. 

Endothelial shear stress is the tangential stress derived from the friction of the 

flowing blood on the endothelial surface of the arterial wall and is expressed in units 

of force/unit area (N/m
2
 or Pascal [Pa] or dyne/cm

2
; 1N/m

2
 =1 Pa = 10 dyne/cm

2
). 

Endothelial shear stress is proportional to the product of the blood viscosity (µ) and 

the spatial gradient of blood velocity at the wall (endothelial shear stress= µxdv/dy).  

Abnormal responses of ECs to shear stress lead to impaired vascular functions and 

contribute to many vascular diseases, such as hypertension, thrombosis, and 

atherosclerosis. Previous studies showed that shear stress could lead to 

morphological changes of ECs via cytoskeleton reorganization with actin filaments 

becoming rearranged into stress fibers aligned in the direction of the shear stress 

(Ando and Yamamoto 2009).  

Laminar shear stress occurs naturally in vivo in straight regions of the vasculature 

but becomes turbulent in areas of disturbed flow, such as the inside wall of curved 

regions and lateral branching points, where a higher incidence of atherosclerosis is 

observed (Ku, Giddens et al. 1985). In healthy regions of the human vasculature 

where the laminar blood flow is unidirectional and pulsatile, the shear stress sensed 

by the endothelium is between 15 and 70 dynes/cm
2
. High shear stress induces an 

atheroprotective and anticoagulant endothelial phenotype (Boon and Horrevoets 

2009). On the other hand, regions of the vasculature predisposed to atherosclerotic 

lesion formation still sense pulsatile flow, though this is highly turbulent and 

bidirectional. The oscillatory shear stress sensed by the endothelium in these regions 

is between 0 and 10 dynes/cm
2
. Application of turbulent shear stress  through use of 

an in vivo cuff model determines a higher probability of development of 

atherosclerotic lesions (VanderLaan, Reardon et al. 2004).  

Moreover, occluded sections of atherosclerotic lesions which are subjected to 

elevated laminar shear stress showed an 85% decrease in EC apoptosis (Tricot, 

Mallat et al. 2000). Furthermore, it has been shown that ECs exposed to 24h of 

steady laminar shear flow at 12 dyn/cm
2
, which reproduces approximately the 
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hemodynamic force in straight parts of arteries, undergo anti-inflammatory (Wang, 

Miao et al. 2006) and anti-proliferative (Lin, Hsu et al. 2000) modifications. In 

contrast, exposure of ECs to disturbed flow, which mimics the hemodynamic force at 

branch points, leads to opposite responses (Hsiai, Cho et al. 2003) 

Cyclin-dependent-kinase (CDK) inhibitors (e.g., p21cip, p27kip) and tumour 

suppressor p53 expression and retinoblastoma (Rb) hypophosphorylation have been 

found to be involved in laminar shear-induced EC growth arrest (Akimoto, 

Mitsumata et al. 2000, Lin, Hsu et al. 2000). 

Different types of flow, such as steady, pulsatile, low and oscillatory, can initiate 

signalling cascades, leading to up or downregulation of a variety of genes and to 

cytoskeleton organization. Steady laminar shear stress activates mechanosensitve, 

atheroprotective signalling pathways, limiting oxidative stress, inflammation and 

apoptosis and maintaining EC integrity (Chatzizisis, Coskun et al. 2007). In contrast, 

in regions exposed to low shear stress, or high oscillatory (disturbed) flow, nitric 

oxide, reactive oxygen species (ROS) scavengers and prostacyclin production is 

attenuated with a consequent reduction of the vasodilatory, atheroprotective role of 

these molecules. Disturbed flow is also probably involved in neovascularisation, 

calcification and thrombogenecity of the atherosclerotic plaque, enhancing 

inflammation and leading to excessive expansive remodelling. All these factors can 

transform an early fibroatheroma into a high-risk plaque (Chatzizisis, Coskun et al. 

2007). 

 

1.3.2.1 ROLE OF SHEAR STRESS IN EC DIFFERENTIATION 

Beside the action of chemokines and growth factors, such as VEGF, endothelial 

differentiation can also be induced by mechanical stimuli. In particular shear stress 

has been studied in both in vitro and in vivo settings. 

Many studies have demonstrated that shear stress plays a critical role in promoting 

the differentiation of ESC-derived progenitor cells into ECs. 

In particular, Yamamoto et al. showed that when Flk1
+
 progenitors are exposed to 

shear stress (1.5 to 10 dynes/cm
2
), EC marker expression, such as Flk1, Flt1, 

PECAM-1 and VE-cadherin, is significantly increased at both protein and mRNA 
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levels as it is increased their tube formation capacity (Yamamoto, Sokabe et al. 

2005).  

In 2005 Wang et al. demonstrated for the first time that mesenchymal progenitors 

differentiate into ECs after exposure to shear stress (Wang, Riha et al. 2005). One 

year later the same investigators showed that shear stress may promote EC 

transdifferentiation from SMCs (Wang, Yan et al. 2006). 

Additionally, it has been demonstrated that murine ESC derived-ECs, when exposed 

to laminar flow, undergo cytoskeletal rearrangements and show increased 

vasculogenic and angiogenic potential in vitro, as compared to cells cultured in static 

conditions (McCloskey, Smith et al. 2006). Also hESC-derived ECs are capable of 

functionally responding to changes in fluid shear stress by modulating cell 

morphology and gene expression (Metallo, Vodyanik et al. 2008) 

Furthermore, data from our group showed that exposing Sca1
+
 progenitor cells to 

laminar shear stress (12 dynes/cm
2
) increased their proliferation and differentiation. 

Sheared Sca1
+ 

cells displayed increased expression levels of Flk1, eNOS and 

VCAM-1 and showed improved tube-like structure formation on Matrigel (Xiao, 

Zeng et al. 2006). 

In another work, recently conducted by our research group, ckit
+
/Sca

-
 progenitor 

cells, when exposed to short-term shear stress using an orbital shaker, showed an 

increased EC marker expression (in revision, Campagnolo et al.).  

Shear stress has been also shown to induce differentiation of EPCs towards arterial 

ECs by increasing the expression of ephrinB2 in the progenitor cells through specific 

protein 1 (Sp1) activation (Obi, Yamamoto et al. 2009). 

In another study, two days application of fluid-based shear stress at levels 

comparable to physiological during the first stages of mouse ESC differentiation 

induced an increase in cell proliferation and in the expression of the endothelial 

markers Flk1, VE-cadherin and CD31. Shear stress also induced the number of Flk1
+
 

cells from 1% to 40%, inducing the ability of the cells to form vessel-like structures 

in vitro (Ahsan T, Nerem RM. 2010). 

Finally, in a work published this year laminar shear stress has been applied to ESCs 

using a 2D adherent parallel plate configuration to study in a systematic way the 

http://www.ncbi.nlm.nih.gov/pubmed?term=Ahsan%20T%5BAuthor%5D&cauthor=true&cauthor_uid=20666609
http://www.ncbi.nlm.nih.gov/pubmed?term=Nerem%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=20666609
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effects of mechanical parameters involved. Shear stress in the range of 1.5 to 15 

dyne/cm
2 

promoted endothelial and hematopoietic differentiation of cells seeded on 

collagen, fibronectin or laminin substrates. Prolonged duration of the treatment 

consistently induced an endothelial response, while application of shear at later 

stages of differentiation impaired hematopoietic differentiation (Wolfe and Ahsan 

2013).  

Thus, shear stress may be used to direct differentiation of ESCs and EPCs toward an 

endothelial-like phenotype, helping to find new cell sources in tissue engineering and 

cardiovascular regenerative medicine. 

 

1.3.3 MicroRNA (miRNA) 

Amongst the factors able to drive EC differentiation and to modify their 

proliferation/migration pathway are microRNAs (miRNAs), which have been 

recently discovered and are now the topic of cutting edge research. 

MiRNAs are single-stranded, noncoding molecules of RNA, 20-25 nucleotides long, 

able to regulate a wide range of cellular processes by binding to non-coding regions 

of messenger RNA (mRNA) (Daubman 2010). The first miRNAs, lin-4 and let-7, 

were discovered in Caenorhabditis elegans in 1993 (Lee, Feinbaum et al. 1993, 

Wightman, Ha et al. 1993, Reinhart, Slack et al. 2000).  Extensive research has 

shown that miRNAs are expressed by most eukaryotic cells and regulate several cell 

functions (Ambros 2008). The exact mechanism of this regulation remains unclear, 

however miRNAs seem to bind to 3’ untranslated regions (3’ UTRs) of target 

mRNAs by traditional base-pairing; in this way miRNA can promote mRNA 

degradation or modify its translational levels, therefore regulating the corresponding 

protein expression (Lee, Feinbaum et al. 1993, Wightman, Ha et al. 1993, Reinhart, 

Slack et al. 2000); (Lewis, Burge et al. 2005).  

MiRNA genes are mostly transcribed by RNA polymerase II (Pol II), resulting in a 

primary miRNA (pri-miRNA) which can be spliced (Lee, Jeon et al. 2002, Bracht 

2004, Cai, Hagedorn et al. 2004). Pri-miRNA are processed in the nucleus by the 

RNase III Drosha to produce a ~70-nt precursor miRNA (pre-miRNA) (Lee, Ahn et 

al. 2003) that is then transported in the cytoplasm by Exportin-5 (Bohnsack, 
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Czaplinski et al. 2004). In the cytoplasm, another Rnase III, Dicer, cleaves the pre-

miRNA in a ~22-nt miRNA duplex (Bernstein, Caudy et al. 2001, Chendrimada, 

Gregory et al. 2005). At this point, the strand of miRNA duplex with lower stability 

of base-pairing at its 5’ is incorporated into the RNA induced silencing complex 

(RISC), whereas the other strand is degraded. RISC is a trimeric complex composed 

of Dicer and the Argonaute protein Ago, which is recruited by the TAR RNA 

binding protein (TRBP) in human cells (Gregory, Chendrimada et al. 2005, 

Maniataki and Mourelatos 2005) (Figure 12). MiRNAs included in the RISC can 

target the mRNAs by base-pairing. If the base-pairing interaction is complementary, 

mRNAs are cleaved and actively degraded (Hutvágner and Zamore 2002, Martinez 

and Tuschl 2004). 

Theoretically, each miRNA should be able to regulate more than 100 mRNAs, 

potentially controlling the activity of 30% of all genes at the post-transcriptional 

level (Xie, Lu et al. 2005, Filipowicz, Bhattacharyya et al. 2008, Cordes, Sheehy et 

al. 2009) 

In the human genome, more than 1000 miRNAs have been identified and there is 

strong evidence that these small molecules are involved in a wide range of 

physiological and pathological processes such as cell proliferation and 

differentiation, angiogenesis and oncogenesis (Lu, Getz et al. 2005, Suarez and Sessa 

2009). Recent studies showed that miRNAs play an important role in vascular 

development and homeostasis (Suárez, Fernández-Hernando et al. 2008, Bonauer, 

Carmona et al. 2009). 
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Figure 12 miRNA production in cells 

RNA polymerase II (Pol II) transcribes miRNA genes and originates the primary miRNA (pri-

miRNA). In the nucleus the pri-miRNA is cleaved by the RNase III endonuclease Drosha and the 

double-stranded RNA binding domain (dsRBD) protein DGCR8/Pasha, originating a ~70-nt precursor 

miRNA (pre-miRNA). The pre-miRNA is transported from the nucleus to the cytoplasm by the 

protein Exportin-5. In the cytoplasm the pre-miRNA is cleaved by Dicer, another RNase III 

endonuclease, together with the TAR RNA binding protein (TRBP) /Loquacious, in a ~22-nt miRNA 

duplex*. The RNA induced silencing complex (RISC), a trimeric complex also composed by Dicer 

and the Argonaute protein Ago, incorporates the miRNA strand, whereas the miRNA* strand is 

degraded. Adapted from (Bushati and Cohen 2007). 

 

 

MiRNA expression is generally tissue specific and dysregulation can cause a cellular 

dysfunction, thus leading to development of diseases such as cancer (Iorio and Croce 

2012), metabolic diseases (Fernández-Hernando, Ramírez et al. 2013) or 

cardiovascular diseases (Ono, Kuwabara et al. 2011).  
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1.3.3.1 ROLE OF miRNAs IN ANGIOGENESIS AND EC 

DIFFERENTIATION AND FUNCTION 

Several miRNAs have been shown to be involved in regulating function, 

proliferation and growth of vascular ECs (Jakob and Landmesser 2012). The first 

evidence of a possible involvement of miRNAs in ESC differentiation was found in 

experiments conducted on Dicer or Drosha deficient ESCs, which are not able to 

produce mature miRNAs and therefore lack differentiation capacity (Murchison, 

Partridge et al. 2005, Wang, Medvid et al. 2007). 

Recent studies focused on angiogenesis-associated miRNAs which are involved in 

ESC differentiation towards ECs (Wu, Yang et al. 2009). In particular, miRNA-126 

has been shown to act as a key regulator of vascular integrity and angiogenesis in 

mouse and zebrafish. Indeed, miRNA-126 is enriched in human ECs and in 

developing mouse embryos and has been found to regulate vascular development, 

regeneration, and integrity (Fish, Santoro et al. 2008, Van Solingen, Seghers et al. 

2009). Knockdown of miRNA-126 in zebrafish caused hemorrhaging and loss of 

vascular integrity in the embryo (Fish, Santoro et al. 2008).  In a similar way, 

endothelial specific deletion of miR-126 in mouse embryos is lethal in ~40% of 

cases and in the surviving miR-126 null mice, lack of tight cell-cell interactions 

between ECs cause loss of vascular integrity (Wang, Aurora et al. 2008). 

Importantly, predicted targets of miRNA-126 include negative regulators of the 

VEGF pathway, such as Sprouty-related protein (SPRED1) and phosphoinositol-3 

kinase regulatory subunit 2 (PIK3R2/p85-beta). These results were confirmed by 

showing that overexpression of SPRED1 and inhibition of the VEGF pathway in 

zebrafish, led to results similar to those observed after miRNA-126 knockdown 

(Fish, Santoro et al. 2008). Finally, overexpression of miRNA-126 in pluripotent 

stem cells induced differentiation to endothelial lineage, corroborating its leading 

role in angiogenesis (Fish, Santoro et al. 2008). MiR-126 also regulates the 

expression of VCAM-1, a critical adhesion molecule, which promotes adherence 

between ECs and leukocytes (Harris, Yamakuchi et al. 2008). 

The family of pro-angiogenic miRNAs includes the miRNA-17-92 cluster, which is 

expressed in ECs and plays a role in tumour vascularization (Otsuka, Zheng et al. 

2008), the miRNA-92a, which has been shown to control angiogenesis in vivo and in 
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vitro and to induce functional recovery of mice ischemic tissues (Bonauer, Carmona 

et al. 2009), and the miRNAs Let-7b and f, which regulate sprout formation 

(Kuehbacher, Urbich et al. 2007). Moreover, the miRNA-130a controls the 

angiogenic phenotype of ECs and is considered to promote angiogenesis in ECs by 

inhibiting the expression of GAX, a homeodomain gene, an  angiogenesis inhibitor 

in vascular ECs (Chen and Gorski 2008). The miRNA-210 is involved in EC 

migration and capillary-like structure formation (Fasanaro, D'Alessandra et al. 

2008), the miRNA-378 promotes tumour angiogenesis (Lee, Deng et al. 2007) and 

the miRNA-296 regulates EC migration and tube formation, and tumour 

angiogenesis in vivo and it has been shown to target hepatocyte growth factor-

regulated tyrosine kinase substrate (HGS), thus leading to a reduction of HGS-

mediated degradation of VEGFR2 and PDGFRβ (Würdinger, Tannous et al. 2008). 

Finally miR-10 promotes the VEGFR2-mediated signalling to control EC 

proliferation, adhesion and migration (Hassel, Cheng et al. 2012). Therefore all the 

above mentioned pro-angiogenic miRNAs can be used as new therapeutic targets in 

the selective modulation of angiogenesis, for the treatment of cardiovascular diseases 

or tumours. 

On the other hand, the group of the anti-angiogenic miRNAs comprises for instance 

the miRNA-221 and 222 which inhibit EC migration and proliferation and have been 

shown to target the angiogenic ability of c-kit, the receptor for stem cell factor 

(SCF), thus modulating the capacity of ECs to form new capillaries (Poliseno, 

Tuccoli et al. 2006, Suarez, Fernandez-Hernando et al. 2007). Moreover, the 

miRNA-328 reduces formation of capillary structure (Wang, Lee et al. 2008), the 

miRNA-15b and 16 induce cell apoptosis (Guo, Pan et al. 2009) and together with 

the miRNA-20a and 20b, have been found to be downregulated in hypoxic 

conditions and to directly decrease VEGF expression in carcinoma cell lines (Hua, 

Lv et al. 2006). miR-92a inhibition has been shown to induce proliferation and 

migration in rat aortic ECs in vitro and to promote re-endothelialisation in injured rat 

carotid arteries in vivo (Poliseno, Tuccoli et al. 2006). Finally, the miRNA-100 

shows an anti-angiogenic function and represses mammalian target of rapamycin 

(mTOR) signalling in endothelial and vascular smooth muscle cells (Grundmann, 

Hans et al. 2011). 
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Study of miRNA expression in feeder and serum-free directed EC differentiation 

protocol in hESCs showed upregulation of angiogenesis-related miRNA let7b, 7f, 

miRNA-126, 130a, 133a and b, 210 and 296 (Wu, Yang et al. 2009) and 

downregulation of anti-angiogenic miRNA-20a, 20b, 221, and 222 (Wu, Yang et al. 

2009), concomitant with an increase in angiogenesis-associated proteins (Kane, 

Meloni et al. 2010).  

Additionally, in a recent work, Kane et al. demonstrated that miR-99b, 181a, and 

181b take part in the endothelial-miRNA signature and are able to enhance EC 

differentiation from pluripotent hESCs and to improve hESC-EC-induced 

therapeutic neovascularization in vivo (Kane, Howard et al. 2012).  

Finally, even though the miR-17-92 cluster plays a role in regulating vascular 

integrity and angiogenesis and EC function (Bonauer and Dimmeler 2009), it has 

been reported that knockdown of the miRNAs in this cluster using antagomirs had 

no effect on ESC differentiation into ECs (Tréguer 2012). 

Further investigations are required to explore miRNA involvement in the early 

development of the vascular system and EC fate commitment. In particular, analysis 

and confirmation of miRNA targets will help to elucidate the complicated network of 

proteins involved and the mechanisms underlying. A better understanding of miRNA 

regulation of cell commitment to vascular endothelial lineages, and the elucidation of 

their role in mature endothelial cells, may help in developing new vascular 

regeneration strategies, to repair damaged tissues after ischemic injury. 

 

1.3.3.2 ROLE OF MiRNA-21 IN ANGIOGENESIS AND ECs 

MiR-21 is one of the most well characterized miRNAs and it is overexpressed in 

many solid tumours (Volinia, Calin et al. 2006). Recent studies suggested that miR-

21 plays an important role in tumour growth and metastasis, showing that miR-21 

targets several tumour suppressors such as phosphatase and tensin homolog (PTEN) 

in human hepatocellular cancer (Meng, Henson et al. 2007), programmed cell death 

4 (PDCD4) in breast cancer cells (Frankel, Christoffersen et al. 2008), tumour 

suppressor gene tropomyosin (Zhu, Si et al. 2007) and matrix metalloproteinases 

inhibitors RECK and TIMP3 in promoting glioma invasion (Gabriely, Wurdinger et 
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al. 2008). Moreover, miR-21 inhibitor has been shown to suppress cell growth of 

breast cancer in vitro and tumour growth in a xenograft mouse model (Si, Zhu et al. 

2006). The role of miR-21 in tumour growth and metastasis led to the hypothesis that 

it might be involved in the development of tumour angiogenesis. 

Indeed, it has been reported that miR-21 overexpression in human prostate cancer 

cells increased hypoxia-inducible factor-1alpha (HIF-1α) and VEGF expression, 

thereby inducing tumour angiogenesis. The molecular mechanism involved AKT and 

ERK 1/2 activation by miR-21. On the other hand, miR-21 inhibition using the 

antagomir blocked this process. MiR-21 directly targeted PTEN, whose inhibition 

activated AKT and ERK and increased HIF-1 and VEGF expression, thus inducing 

tumour angiogenesis. Moreover, miR-21-induced tumour angiogenesis was 

abolished after inhibiting AKT and ERK using the inhibitors LY294002 and U0126 

respectively. The same effect was observed by HIF-1α inhibition, underlying the 

importance of HIF-1α in this process (Liu, Li et al. 2011). 

In another work conducted in primary bovine retinal microvascular endothelial cells, 

which represent a well-characterized in vitro system to study angiogenesis, RNA 

extracted from the cells was used to create RNA library for deep sequencing. 

Amongst the 250 known microRNAs mapped, the most highly expressed was miR-

21. Inhibition of miR-21 using a LNA inhibitor was found to decrease proliferation, 

migration and tube-formation ability of RMECs, suggesting that miR-21 is involved 

in the regulation of angiogenesis in the retinal microvasculature (Guduric-Fuchs, 

O'Connor et al. 2012). 

However, miR-21 has been also reported to exhibit anti-angiogenic functions. For 

instance, in a study conducted in human umbilical vein endothelial cells (HUVECs), 

miR-21 expression has been confirmed to be negatively regulated by the pro-

angiogenic factors serum and bFGF. Furthermore, in vitro angiogenic assays showed 

that miR-21 overexpression led to decreased proliferation, migration and tube 

formation capacity of ECs, whereas miR-21 inhibition with LNA-21 exerted the 

opposite action. The decrease in cell migration can probably be explained with a 

reduction in the organization of actin filaments into stress fibers by miR-21. In this 

process miR-21 targeted Ras homolog gene family, member B (RhoB), whose 

inhibition impaired EC migration and tubulogenesis; indeed the mechanism of miR-
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21 inhibition of angiogenesis is probably mediated by RhoB repression (Sabatel, 

Malvaux et al. 2011). Finally, in a mouse model of choroidal neovascularisation, 

miR-21 has been shown to act as a potential therapeutic inhibitor of angiogenesis 

(Sabatel, Malvaux et al. 2011).  

MiR-21 has also been implicated in shear stress-mediated endothelial differentiation. 

Mechanical forces associated with blood flow play in fact a relevant role in the 

regulation of vascular signalling and gene expression in ECs. In the work of Weber 

et al. the miRNA expression profile in human ECs subjected to unidirectional shear 

stress has been determined and the role of miR-21 in shear stress-induced changes in 

EC function has been elucidated. In HUVECs exposed to prolonged unidirectional 

shear stress (24h, 15 dynes/cm
2
) the miRNA that showed the greatest change was 

miR-21, which showed an upregulation of 5.2-fold, as compared to untreated cells. 

Protein expression of PTEN was also downregulated in HUVECs exposed to 

unidirectional shear stress or transfected with pre-miR-21. Interestingly, 

overexpression of miR-21 in HUVECs led to reduced apoptosis and increased eNOS 

phosphorylation and NO production. In conclusion, this study demonstrated that 

miR-21 expression is regulated by shear stress forces in ECs and these mechanisms 

are involved in the control of vascular homeostasis (Weber, Baker et al. 2010). 

While unidirectional shear stress is a known differentiation stimulus for endothelial 

differentiation, oscillatory shear stress is typically associated with the vascular 

inflammation processes leading to atherosclerosis. Oscillatory shear stress has been 

shown to induce transcription factor activator protein-1 (AP-1)-dependent miR-21 

expression in HUVECs. Moreover, miR-21 directly targeted PPARα, thus inducing 

the expression of VCAM-1 and monocyte chemotactic protein-1 (MCP-1) and the 

consequential adhesion of monocytes to ECs. In conclusion, the induction of miR-21 

by oscillatory shear stress contributes to proinflammatory responses of vascular 

endothelium (Zhou, Wang et al. 2011). 

MiRNAs have been shown to regulate many different biological processes, and miR-

21 has been reported to play a role not only in EC, but also in EPC function. In 

particular, a recent study described the miR-21 regulation of EPC scenescence, 

although the mechanisms underlying this process in EPCs are still unknown. In 

particular, microRNA profiling and microarray analysis have been performed in 
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lineage-negative bone marrow cells from young and aged wild-type and 

apolipoprotein E-deficient mice, in order to map the microRNA/gene expression 

signatures of EPC senescence. From this analysis, miR-10A and miR-21, together 

with their common target gene Hmga2 have been identified as critical regulators of 

EPC senescence. Overexpression of miR-10A and miR-21 in young EPCs led to 

upregulation of senescence-associated β-galactosidase, decreased self-renewal 

potential, increased p16(Ink4a)/p19(Arf) expression and impaired EPC angiogenesis 

in vitro and in vivo, causing EPC senescence. On the other hand, inhibition of miR-

10A* and miR-21 in aged EPCs, decreased senescence-associated β-galactosidase 

expression, increased self-renewal potential, decreased p16(Ink4a)/p19(Arf) 

expression and improved EPC angiogenesis in vitro and in vivo, thereby rejuvenating 

EPCs. In conclusion, miR-10A and miR-21 have been reported to regulate EPC 

senescence via inhibiting Hmga2 expression. Importantly, modulation of senescence-

associated microRNAs may offer new therapeutic applications to improve EPC-

mediated angiogenesis and vascular repair (Zhu, Deng et al. 2013). 

In summary, from the above reported studies, a contradictory role for miR-21 in 

angiogenesis is emerging and the molecular mechanisms involved in this regulation 

remain to be clarified. Furthermore, no studies have demonstrated a link between 

miR-21 and endothelial differentiation from stem cells. Indeed, in the experiments 

conducted in this thesis, we will try to investigate the role of miR-21 in promoting 

iPSC differentiation into functional ECs, also elucidating the underlying molecular 

mechanisms. 

 

1.3.4 TRANSFORMING GROWTH FACTOR BETA (TGF-β) 

FAMILY 

The transforming growth factor β (TGF-β) family is a superfamily of growth factors, 

which includes 2 families: the TGF-β/activin/Nodal family and the bone 

morphogenetic proteins (BMPs)/growth and differentiation factor (GDF)/Mullerian 

inhibiting substance (MIS) family.  

The TGF-β family regulates many different biological processes, such as 

differentiation, angiogenesis, cell growth, apoptosis, migration, extracellular matrix 
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production, tumour metastasis and invasion and embryonic development (Rahimi 

and Leof 2007, Zhang 2009).  

TGF-β is the most potent inducer of endothelial-to-mesenchymal transition (EndMT) 

and one of the best promoters of fibrosis in many organs (Hartsough and Mulder 

1995, Yu, Hebert et al. 2002).  

Epithelial-to-mesenchymal transition (EMT) is an essential process occurring during 

development, when epithelial cells lose their epithelial markers and start to express 

fibroblast markers, such as fibroblast-specific protein-1 (FSP-1). EMT occurs in 

many situations during normal development and also in pathologic conditions such 

as the progression of malignant epithelial tumours (Engel, McDonnell et al. 1999) 

and organ fibrosis (Wilkes, Mitchell et al. 2005). In a similar way, EndMT 

participates to fibroblast formation in fibrotic diseases of the heart (Lee, Hempel et 

al. 2010), lung
 
 (Kurpinski, Lam et al. 2010), kidney (Chen and Lechleider 2004), 

liver (Kennard, Liu et al. 2008) and carcinoma-associated fibrosis (Pardali and Ten 

Dijke 2009). 
 

In a recent study it has been shown that miR-21, which is highly expressed in 

fibroblasts and rapidly inducible by TGF-β, plays an important role in partially 

mediating EndMT via targeting the PTEN/AKT pathway (Mythreye and Blobe 

2009). 

Five distinct isoforms of TGF-β have been so far described, each approximately 65–

85% homologous, and arising after proteolytic cleavage of longer precursors. The 

mammalian TGF-β isoforms (TGF-β-1, -2 and -3) are secreted as latent precursors 

and mediate signal transduction through binding to multiple cell surface receptors 

(Clark and Coker 1998). The biological activities of the mature isoforms are not 

species-specific. The various TGF-β isotypes share many biological activities and 

their action on cells are qualitatively similar in most cases, apart from few examples 

of distinct functions. The biggest differences in the TGF-β isoforms are related to the 

spatial and temporal expression of their mRNAs and proteins in developing, 

regenerating and pathologic tissues (Roberts 1992).  

The TGF-β family exerts its action on the cells via binding of TGF-β1, 2 and 3 

ligands to specific type I and type II serine/threonine kinase receptors and 
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intracellular SMAD transcription factors. The human and mouse genomes encode for 

eight SMAD proteins, which are classified into three groups. The first group, 

receptor-regulated SMAD (R-SMAD), comprises SMAD1, SMAD5, and SMAD8 

which are activated by the BMP-specific type I receptors, and SMAD2 and SMAD3 

which are activated by the TGF-β-specific type I receptors; the second group is 

represented by a common mediator SMAD (Co-SMAD), such as SMAD4; the third 

SMAD group involves inhibitory SMADs (I- SMADs), such as SMAD6 and 

SMAD7 (Massagué, Seoane et al. 2005). Activated R-SMADs form complexes with 

the Co-SMAD, which translocate into the nucleus, where they regulate transcription 

of target genes (Song, Estrada et al. 2009). It is well-known that TGF-β exerts 

multiple biological effects via SMAD (Massagué, Seoane et al. 2005, Moustakas and 

Heldin 2005) and non-SMAD (Moustakas and Heldin 2005) pathways. In the SMAD 

pathway, two type I and two type II receptors (TβR-I and II) form a tetrameric 

complex through ligand binding to type II receptors on the cell surface. Both TGF-

β1 and TGF-β3 show a high affinity for TGF-βRII. In contrast, TGF-β2 has a low 

affinity for TGF-βRII and requires an accessory receptor, TGF-βRIII (also known as 

β-glycan), for high-affinity interaction with the heteromeric-signalling complex. 

After ligand binding to the complex, the type II receptor kinase activates the type I 

receptor kinase, which then trasduces the signal through phosphorylation of receptor-

activated SMADs (R- SMADs) (Goumans, Liu et al. 2009). In addition to the 

signalling via the canonical SMAD pathway described above, TGF-β can also 

activate other signalling molecules such as mitogen-activated protein kinases 

(MAPKs) in a cell-type dependent manner (Mu, Gudey et al. 2012). Examples of 

such MAPKs are ERK (Hartsough and Mulder 1995), c-Jun N-terminal kinase 

(JNK) (Engel, McDonnell et al. 1999), p38 kinase (Yu, Hebert et al. 2002), 

phosphatidylinositol-3-kinase (PI3K)/AKT (Wilkes, Mitchell et al. 2005), or Rho-

like GTPase (Bhowmick, Ghiassi et al. 2001) signalling pathways (Figure 13). 
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Figure 13 Mechanisms of TGF-β signalling 

TGF-β signalling is initiated by assembling receptor complexes that activate SMAD transcription 

factors. Firstly, TGF-β1, -β2, or -β3 isoform binds to the TGF-β type II receptor (TβRII), which 

becomes phosphorylated and activated. While TGF-β1 and TGF-β3 show a high affinity for TGF-

βRII, TGF-β2 has a low affinity for TGF-βRII and TGF-βRIII is required for its binding. Secondly, 

TGF-βRII-mediated phosphorylation recruits TGF-βRI into the complex and activates it.  Activated 

TGF-ΒRI recruits into the complex and phosphorylates the receptor-associated SMADs (R-SMAD), 

SMAD2 and SMAD3. This phosphorylation event causes R-SMAD dissociation from the activated 

receptor complex, association with the SMAD4, translocation into the nucleus and subsequent 

transcriptional activation or repression. In some physiological and pathological conditions TGF-β can 

also activate SMAD-independent signalling cascades, including the ERK, JNK, and p38 MAPK 

kinase pathways (Iwata, Parada et al. 2011). 
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1.3.4.1 ROLE OF TGF-β IN ANGIOGENESIS, VASCULOGENESIS AND EC 

DIFFERENTIATION AND FUNCTION  

The role of TGF-β signalling in the vascular development has been studied mainly in 

the context of SMC differentiation. The role of TGF-β in EC differentiation has not 

been investigated in detail and in particular the specific role of the different isoforms 

is still in need of clarification, since limited research has been done to date to 

distinguish the function of the main isoforms in the different biological situations.  

The essential roles of TGF-β in angiogenesis have been clarified by genetic studies 

in human and mouse models. Deletions of many members of the TGF-β family, such 

as TGF-β1, TGF-βRII, activin receptor-like kinase 1(ALK1) and TGF-βRI (ALK5), 

endoglin, SMAD1, 4 and 5, cause vascular remodelling defects and absence of mural 

cell formation, thus leading to embryonic lethality (Pardali and Ten Dijke 2009). For 

instance, deletion of TGF-β1 in the mouse results in embryonic lethality because of 

defective yolk sac vasculogenesis and EC deletion of TGF-βRI and II results in 

embryonic lethality at embryonic day 10.5 due to vascular defects. However, TGF-

β1 deletion leads to vascular abnormalities only in a specific genetic background, 

suggesting that other factors may be involved in the development of vascular 

abnormalities caused by defects in TGF-β signalling (Pardali, Goumans et al. 2010). 

Moreover, mutations in the components of the TGF-β signalling pathways, such as 

endoglin, ALK1 and SMAD4 are responsible for the most clinical cases of 

Hereditary Hemorrhagic Telangiectasia (Pardali and Ten Dijke 2009). 

TGF-β plays a critical role in stem cells differentiation into SMCs by modulating and 

interacting with other pathways such as the Notch signalling pathway. In a recent 

work conducted on human mesenchymal stem cells, it has been shown that TGF-β 

induced the expression of Notch ligand Jagged 1 (JAG1) and SMC markers, 

including smooth muscle alpha-actin (ACTA2), calponin 1 (CNN1), and myocardin 

(MYOCD), via SMAD3 and Rho kinase-dependent activation. Furthermore, Notch 

signalling mediated TGF-β regulation of MSC differentiation and induced the 

differentiation of mesenchymal stem cells and hESCs into SMCs (Kurpinski, Lam et 

al. 2010). In another study, it was demonstrated that TGF-β-activated SMAD2 and 

SMAD3 were necessary for the induction of the SMC marker α-SMA, and that 

SMAD2 and SMAD3 may cooperate to induce a smooth muscle phenotype in neural 

crest stem cell line Monc-1 (Chen and Lechleider 2004).  

javascript:glosspop('mesenchymal')
javascript:glosspop('mesenchymal')


71 

 

In endothelial cells, TGF-β has been shown to bind to and signal through two distinct 

types of receptors: TGF-βR1 (ALK5) and ACVRL1 (ALK1); this results in 

activation of SMAD2/3 and SMAD1/5/8, respectively (Goumans, Valdimarsdottir et 

al. 2002, Goumans, Valdimarsdottir et al. 2003). The role of TGF signalling in ECs 

is still unclear and studies have led to opposite conclusions.  

TGF-β/ALK1 signalling has been reported to promote proliferation and migration of 

ECs whereas TGF-β/ALK5 has been shown to do the opposite (Figure 3.4) 

(Goumans, Valdimarsdottir et al. 2002, Goumans, Valdimarsdottir et al. 2003). 

Indeed, the balance between TGF-β/ALK1 and TGF-β/ALK5 signalling may 

determine the pro- or the anti-angiogenic effects of TGF-β.  

Furthermore, TGF-β1 negatively impacts on hESC-derived EC proliferation and 

commitment, through the inhibition of inhibitor of DNA binding protein-1 (Id1) 

expression (James, Nam et al. 2010). It has been also demonstrated that shear stress 

can induce endothelial differentiation from mouse embryonic mesenchymal 

progenitor cells, by suppressing TGF-β1 functions through down-regulation of TGF-

β1, TGF-βR1, TGF-βR2, SMAD2, SMAD3 and SMAD4 and up-regulation of 

SMAD7 (Wang, Li et al. 2008) 

Additionally, different effects of TGF-β on angiogenesis are usually dose- and 

cellular context- dependent; for instance the role of TGF-β1 in tumour angiogenesis 

is context-dependent, since it has been shown that TGF-β1 prevents tumour growth 

and angiogenesis in early phases of tumour development, whereas it promotes it in 

late-stages of tumour progression (Goumans, Valdimarsdottir et al. 2002, Serratì, 

Margheri et al. 2009, Pardali, Goumans et al. 2010). Moreover, low concentrations 

of TGF-β were shown to promote EC proliferation and migration and to enhance the 

angiogenic effects of bFGF or VEGF in a 3D fibrin or collagen assay, while high 

concentrations led to the opposite effect (Pepper 1997, Pardali and Ten Dijke 2009).  

In another study, it has been reported that treating bovine capillary endothelial 

(BCE) cells with TGF-β initially leads to apoptosis by inducing VEGF expression 

through conversion of VEGF/VEGFR2-activated p38 (MAPK) into a pro-apoptotic 

signal by TGF-β signalling (Ferrari, Pintucci et al. 2006). Prolonged TGF-β 

treatment resulted instead in EC remodelling and formation of cord-like structures 

(Ferrari, Cook et al. 2009).  
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In addition, the role of the different receptors TGF-β type I and II receptors on EC 

function is still unclear because of the remarkable diversity and context-dependent 

effects of TGF-β family members on the complex process of blood vessel formation. 

Recent studies suggested that the effects of TGF-βRII or TGF-βRI loss on 

angiogenesis are caused by defects in SMC function and not by their role on ECs 

(Harris, Yamakuchi et al. 2008).  

Some studies also remarked on a crosstalk between VEGF and ALK1/endoglin 

signalling in angiogenesis, even though the exact underlying molecular mechanisms 

remain to be elucidated. In particular, inhibition of ALK1/endoglin signalling using 

the soluble chimeric proteins ALK1-fragment crystallizable region (Fc) and 

endoglin-Fc impaired VEGF-induced EC sprouting in vitro. Moreover, ALK1-Fc has 

been shown to inhibit VEGF/bFGF-induced angiogenesis in an in vivo matrigel plug 

assay (Cunha, Pardali et al. 2010). In addition, treatment with ALK5 kinase inhibitor 

enhanced VEGF/bFGF-induced angiogenesis in a matrigel-plug assay in vivo (Liu, 

Kobayashi et al. 2009). 

The regulation of angiogenesis by TGF-β is further complicated by the role of 

several other key factors, such as SMAD and BMP, as well as the co-receptor 

endoglin. The activation of different classes of SMADs by the same ligand, such as 

TGF-β, may activate the formation of diverse receptor complexes, thus inducing 

opposite effects. The exact role of BMP9-induced SMAD1 or SMAD2 

phosphorylation in angiogenesisis is still not fully clear. Although BMP9 and 

BMP10 were considered to have an anti-angiogenic action, BMP9 in combination 

with TGF-β was shown to enhance VEGF-induced proliferation of ECs in vitro and 

VEGF/bFGF-induced angiogenesis in vivo (Cunha, Pardali et al. 2010). 

In conclusion, TGF-β and BMP signalling appears to play crucial roles in EC 

function and angiogenesis; however the molecular mechanisms by which these 

molecules regulate vascular system still remain to be elucidated. TGF-β signalling 

exerts apparently contradictory actions during the different stages of angiogenesis 

which are dependent on the distinct cellular context, local concentration of the 

ligands, receptors, coreceptors, antagonists and their interactions. Although there 

have been new insights into the role of TGF-β signalling in vascular development 

and function, the exact mechanisms remain to be elucidated. A better understanding 
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of the molecular mechanisms underlying the different effects of TGF-β signalling on 

angiogenesis will help in developing new therapeutic solutions to pathological 

vascular malformations and tumour growth and angiogenesis (Pardali, Goumans et 

al. 2010). 

 

1.3.5 SIGNALLING PATHWAYS INVOLVED IN EC 

DIFFERENTIATION AND ANGIOGENESIS 

 

1.3.5.1 VEGF AND SHEAR STRESS SIGNALLING INTERACTION 

External and environmental stimuli such as VEGF and shear stress have been 

demonstrated to play a pivotal role in the induction of endothelial differentiation. 

Both the binding of VEGF to its receptors and the stimulation of mechanoreceptors 

by shear stress activate a signal cascade inside the cells, which results in the 

promotion of endothelial-specific proteins. Interestingly, some of these pathways are 

common to multiple stimuli. The mechanisms of EC differentiation induced by 

VEGF have been thoroughly investigated. The effect of VEGF in ECs and their 

precursors is strongly dependent on its biding to VEGFR-2. For instance, it is well 

known that VEGFR-2 is fundamental in the recruitment and differentiation of 

endothelial precursors from mouse ESCs (Yamashita, Itoh et al. 2000, Schmidt, 

Brixius et al. 2007). Lack of this gene (Flk1-/-) in a mouse model arrests vascular 

and haematopoietic development; the reintroduction of VEGFR-2 through lentiviral 

transduction of ESC cultures differentiating in vitro as embryoid bodies is sufficient 

to rescue the phenotype (Li, Edholm et al. 2007).  

The action of VEGF, through its binding to VEGFR-2, is mediated by the activation 

of phospholipase C (PLC)/calcium and phosphokinase C (PKC), PI3K/AKT, focal 

adhesion kinase (FAK) and the RAS/RAF/MEK/ERK pathways (Figure 14) (Giles 

2001, Gélinas, Bernatchez et al. 2002, Zeng, Xiao et al. 2006, McCubrey, Steelman 

et al. 2007). 
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Figure 14 VEGF activates different signalling pathways leading to angiogenesis 

When vascular endothelial growth factor (VEGF) binds to Flk1/KDR, this tyrosine kinase receptor is 

activated by phosphorylation and activates different signalling cascades, which all together lead to 

angiogenesis. The activation of phospholipase C gamma (PLCγ) leads to cell proliferation and 

vasopermeability via the inositol triphosphate and calcium (IP3/Ca
++

) or diacylglycerol and 

phosphokinase C (DAG/PKC) pathways. VEGF induces immediate synthesis of nitric oxide (NO), 

also involved in promoting angiogenesis, through the PLC/Ca
++

 pathway. Activation of 

phosphoinositide 3-kinase (PI3K) promotes cell survival via the phosphokinase B (PKB) pathway. 

When SHC, an intermediate in the activation of the rat sarcoma (Ras) pathway, is phosphorylated by 

VEGF receptor, it activates the Ras/mitogen-activated protein kinase (MAPK) pathway, which 

promotes gene expression and cell proliferation. Finally, cytoskeletal rearrangement and cell 

migration are also involved in angiogenesis through the signalling cascade of focal adhesion kinase 

(FAK) and paxillin, two focal adhesion-associated proteins. Adapted from (Giles 2001). 

 

 

Recent evidence has revealed shear stress as an important key regulator for EPC 

differentiation. However, the specific mechanisms of mechanotransduction that 

contribute to the shear stress-induced EPC differentiation have still to be elucidated. 

Recently, in EPCs isolated from rat bone marrow and stimulated by shear stress, an 

increased expression of the EC markers vWF and CD31 was observed, which was 

found to be related to the levels of integrin β1 and β3. These integrins have indeed 

been demonstrated to play important roles in regulating the shear stress-induced 
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endothelial cell marker expression in late EPCs. Further study of these integrins may 

provide novel insights into the mechanisms of mechanotransduction in late EPC 

differentiation mediated by shear stress (Cui, Zhang et al. 2012). 

In addition the mechanosensor heparan sulphate proteoglycan has been found to 

mediate shear stress-induced expression of vWF, VE-cadherin, tight junction protein 

gene ZO-1 and vasodilatatory genes eNOS and COX-2 in ESC-derived ECs 

(Nikmanesh, Shi et al. 2012). 

VEGF signalling is also deeply involved in the effect of shear stress on endothelial 

differentiation. In particular, in Flk1
+
 progenitor cells derived from mouse ESCs 

exposed to shear stress, the mRNA levels of venous endothelial marker Eprhin B4 

decreased, whereas mRNA of the arterial EC marker Ephrin B2 levels increased 

dose-dependently. The increased Ephrin B2 expression after exposure to shear stress 

is mediated by VEGF-Notch signalling pathway, in which VEGF receptor 

phosphorylation leads to the activation of Notch (Masumura, Yamamoto et al. 2009). 

In a very recent study showing that endothelial and hematopoietic differentiation are 

both stimulated by shear stress application to ESCs, inhibition of Flk1 neutralized 

this effect. This result indicates that the membrane protein is a critical mediator of 

both endothelial and hematopoietic differentiation by applied shear stress to ESCs 

(Wolfe and Ahsan 2013).  

Moreover VEGF-R2 and the PI3K/AKT/mTOR signal pathway have been shown to 

be activated by shear stress and to induce differentiation, migration, adhesion, 

proliferation, prevent apoptosis and ultimately to increase the vasculogenesis 

potential of circulating EPCs (Obi, Masuda et al. 2012)  

Furthermore, in the study by Ye et al., activation of AKT has been shown to be 

essential in the shear stress-induced differentiation of EPCs. Both shear stress and 

VSMCs co-culture were shown to induce the differentiation of EPCs, increasing the 

expression of the endothelial markers CD31 and simultaneously decreasing the 

progenitor markers CD133 and CD34. This effect was blunted by the presence of 

AKT inhibitor, indicating the essential role of AKT activation in shear stress and/or 

VSMC-induced EPC differentiation, which provide a new insight to clinical 

application on the regeneration of the vascular endothelium (Ye, Bai et al. 2008).   
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Lee et al. studied the role of HDACs in EC differentiation, showing that ESCs 

undergo gene-specific and chromatin remodelling which results in the inhibition of 

HDACs and prevents differentiation (Lee, Hart et al. 2004). In particular, data from 

our group demonstrated that the Flk1–PI3K–AKT–HDAC3–p53–p21 pathway is 

crucial in the shear stress-induced endothelial differentiation of progenitor cells 

(Sca1
+
) derived from ESCs, and also that VEGF induces EC differentiation through 

a similar pathway. Specifically, it has been shown that that laminar shear stress (12 

dyne/cm
2
) is able to activate HDAC3 through activation of Flk1 and its downstream 

PI3K-AKT cascade. Activated HDAC3 in turn deacetylates p53 and activates p21, 

resulting in EC differentiation and survival (Xiao, Zeng et al. 2006). 

 

1.3.5.2 miRNA-21 INTERACTION WITH THE VEGF AND SHEAR STRESS 

SIGNALLING  

MiR-21 function in angiogenesis is still unclear, since some studies show that it 

promotes the angiogenic process, while others show the opposite. 

Its role in tumour angiogenesis and the mechanisms involved in this process were 

described in a work by Liu et al. miR-21 was found to induce tumour angiogenesis 

in human prostate cancer by targeting PTEN, leading to the activation of AKT and 

ERK1/2 signalling pathways, which enhanced HIF-1α and VEGF downstream 

expression. On the other hand, overexpression of PTEN inhibited tumour 

angiogenesis by partially inactivating AKT and ERK and decreasing the expression 

of HIF-1 and VEGF. Moreover, using AKT and ERK inhibitors, HIF-1α and VEGF 

expression and angiogenesis were suppressed. Finally, inhibition of HIF-1α 

abolished miR-21-inducing tumour angiogenesis, indicating that this gene is a key 

downstream target of miR-21 in the regulation of tumour angiogenesis (Liu, Li et al. 

2011).  

Moreover, in human pancreatic cells miR-21 expression has been found to be 

increased by hypoxia, together with VEGF and IL6 expression, leading to increase in 

cancer stem cell marker expression, cell migration/invasion and angiogenesis (Bao, 

Ali et al. 2012). 
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In contrast, miR-21 has been shown to negatively regulate angiogenesis in 

HUVECS, where its expression is negatively regulated by serum and bFGF, two pro-

angiogenic factors. In in vitro angiogenic assays, miR-21 overexpression reduced 

endothelial cell proliferation, migration and the ability of the cells to form tube-like 

structures, whereas miR-21 inhibition led to opposite results. After miR-21 

overexpression, the organization of actin into stress fibers was also reduced, 

explaining the decrease in cell migration. This negative regulation of angiogenesis 

by miR-21 occurs through directly targeting RhoB expression (Sabatel, Malvaux et 

al. 2011). 

In a recently published study, the drug rapamycin, which is eluted by some coronary 

artery stents, was found to suppress endothelial proliferation and migration in 

HUVECs, through overexpression of miR-21. RhoB is directly targeted by miR-21 

in this rapamycin-mediated mechanism. Accordingly, miR-21 inhibition abolished 

the negative effects of rapamycin on endothelial cell growth and mobility (Jin, Zhao 

et al. 2013).  

Furthermore it has been shown that shear stress can regulate the expression of some 

miRNAs. In particular, in a study conducted by Weber et al. in 2010 in HUVECs 

subjected to prolonged unidirectional shear stress (24h, 15 dynes/cm
2
), the 

expression of miR-21 was increased approximately 5 fold, as compared to static 

control cells. Overexpression of miR-21 in the cells influenced endothelial biology 

by decreasing apoptosis and activating the NO pathway. This demonstrates that the 

positive effect of shear stress is at least partially mediated by miR-21 (Weber, Baker 

et al. 2010). 

 

1.3.5.3 TGF-β INTERACTION WITH THE VEGF AND SHEAR STRESS 

SIGNALLING  

Both VEGF and TGF-β1 have been shown to induce angiogenesis, but with opposite 

effects on ECs. In fact, in ECs VEGF promotes survival, while TGF-β1 induces 

apoptosis through a VEGF/Flk1 mediated signalling. Genetic deficiency of VEGF 

abolishes TGF-β1 induction of EC differentiation and formation of vascular 

structures in embryoid bodies. Furthermore, inhibition of VEGF blocks TGF-β1 

induction of both apoptosis and angiogenesis. TGF-β1 induces endothelial cell 
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apoptosis via up-regulation of VEGF expression and activation of VEGF/Flk1 

signalling, which is a rapid and transient process required for TGF-β1-induced 

angiogenesis. In conclusion, in this study a new role of VEGF in mediating EC 

apoptosis has been elucidated, which might represent a target to control TGF-β1-

induced-angiogenic process (Ferrari, Cook et al. 2009). 

VEGF induction of cell survival also occurs via activation of PI3K/AKT pathway 

through the formation of a multi-protein complex that involves Flk1 and the 

adherens junction proteins VE-cadherin and beta-catenin. In another work conducted 

by Cook and Ferrari on the TGF-β1-VEGF interaction in ECs, it has been reported 

that TGF-β1 induces changes in the adherens junction structure by separating Flk1 

from VE-cadherin and promoting association of beta-catenin with Flk1 and VE-

cadherin. These rearrangements are mediated by VEGF/Flk1 signalling. In 

conclusion, the adherens junction plays an important role in the TGF-β1-VEGF 

interaction in ECs. (Cook, Ferrari et al. 2008) 

Finally, in mouse embryonic mesenchymal progenitor cells, fluid shear stress has 

been shown to promote EC differentiation. Shear stress application also abolished 

TGF-β function through inhibition of TGF-β1, TGF-R1 and 2 and positive signalling 

molecules SMAD2, SMAD3 and SMAD4 and induction of negative signalling 

molecule SMAD7. In conclusion, this study suggests that shear stress-induced EC 

differentiation in mesenchymal progenitor cells might involve a negative regulation 

of TGF-1 (Wang, Li et al. 2008). 

In synthesis, in this paragraph we have clustered the most important mechanisms and 

signalling pathways involved in EC differentiation and angiogenesis. In particular, 

we focused on the interactions amongst the pathways activated by VEGF, shear 

stress, miR-21 and TGF-β stimuli. Indeed, in this work, the mechanisms involving 

these four stimuli during the iPSC differentiation process into ECs have been 

investigated.  
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1.4 USE OF STEM CELLS IN 

CARDIOVASCULAR THERAPY 

 

The study of the differentiation potential of stem cells and the associated 

mechanisms presents the opportunity of a new and exciting prospect of therapy for 

many illnesses, including cardiovascular diseases. The possibility of using cell-based 

therapies to improve endothelial and cardiac function after injury is causing a great 

interest and has prompted a large number of studies. In the recent years, a wide 

variety of cell types have been considered as candidates for therapeutic delivery in 

patients with cardiovascular problems, in particular in the context of myocardial 

infarction (Figure 15) (Segers and Lee 2008). Although the ideal cell type has not 

been found yet, many studies have been carried out to compare the efficacy of 

different stem cell populations (Wollert and Drexler 2005). 

 

 

Figure 15 Potential cell types and mechanism involved in cardiac therapy 

Many types of stem or progenitor cell populations can be isolated from different autologous or 

allogeneic organs or tissues: stem cells from blastula or induced from skin fibroblasts, cardiac stem 

cells from the heart, endothelial progenitor cells from blood and bone marrow and mesenchymal stem 

cells from bone marrow or adipose tissue. Most of those cells are able to differentiate into 

cardiomyocytes, endothelial cells, smooth muscle cells and/or to release pro-angiogenic and pro-

mitotic paracrine factors, potentially leading to remodelling, angiogenesis or activation of exogenous 

stem cells in the infarcted heart. Adapted from (Segers and Lee 2008). 
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Ever since the first therapeutic bone marrow transplantation was performed in dogs 

in the early fifties by E. Donnall Thomas, the possibility of using adult stem cells in 

autologous or heterologous cell therapy has been deeply exploited. Adult stem cells 

are therapeutically attractive because they can potentially be derived from the patient 

in need of transplantation and therefore they do not present immunological or ethical 

issues. Furthermore, they possess limited proliferation capacity and differentiation 

potential, reducing the risk of tumourigenesis.  

On the other hand, adult stem cells use is hampered by their limited availability and 

accessibility and their low ex-vivo proliferation, which reduce their application. More 

importantly, while proof of efficient differentiation of adult stem cells in in vivo 

settings is still debated (Hombach-Klonisch, Panigrahi et al. 2008), clinical trials 

involving the use of autologous stem cells have shown limited improvement in the 

functional outcome (Dill, Schächinger et al. 2009, Zhang, Sun et al. 2009, Perez 

Simon, Lopez-Villar et al. 2011). The prospective of stimulation of resident stem 

cells within the organs through the use of specific drugs or by the delivery of pro-

angiogenic and pro-survival progenitor cells is of major interest, although it is not 

yet clear if the resident stem cell number would be sufficient after a severe injury 

(Chavakis, Koyanagi et al. 2010). Additionally, it has recently been shown that an 

epicardial progenitor population is able to give rise to de novo cardiomyocytes in the 

case of myocardial infarction through stimulation by peptide thymosin β4; this 

suggests a regenerative mechanism within the mammalian adult heart (Smart, Bollini 

et al. 2011).  

The use of allogenic cells for transplantation presents the same immunological 

problems associated with any other tissue or organ transplantation. Within all the cell 

types studied, ESCs have the advantage of an immunoprivileged phenotype, as 

shown in pre-clinical studies (Deb and Sarda 2008). This, together with their 

reported high proliferation and differentiation capacity, made ESCs the focus of 

numerous in vivo studies aiming to investigate their clinical potential. During the 

past few years, ESCs have become a major focus of translational medicine, 

regenerative medicine (Ehnert, Glanemann et al. 2009) and functional tissue 

engineering (Guilak, Butler et al. 2001), due to their potential  clinical applications in 

the treatment of degenerative diseases such as  metabolic diseases, brain and myelin 

disorders, heart disease and many other diseases (Teo and Vallier 2010).  
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Figure 16 Isolation, culture and differentiation of embryonic stem cells 

Embryonic stem cells (ESCs) are isolated from the inner cell mass of the blastocyst and then cultured 

and differentiated in vitro towards different cell types using established differentiation protocols. 

http://www.csa.com/discoveryguides/stemcell/overview.php.              

 

Recent reports showed that ESCs delivered into a mouse infarcted myocardium were 

able to originate cardiomyocytes, which integrated in the host tissue. Treatment 

resulted in a stable and beneficial outcome observed over 12 weeks of follow-up and 

normalization of the ventricular architecture, decrease of the entity of scars and of 

myocardial necrosis (Hodgson, Behfar et al. 2004). ESC transplantation also reduced 

cardiac fibrosis, cardiomyocyte hypertrophy and apoptosis resulting in the inhibition 

of adverse cardiac remodelling (Singla, Lyons et al. 2007).  

Beside their ability to give rise to functional cardiomyocytes, ESCs were also shown 

to be able to release pro-angiogenic and pro-survival factors contributing to their 

therapeutic effect. A recent study investigated the effect of embryonic and adult stem 
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cells treatments in a mouse model of myocardial infarction. ESC-treated hearts 

showed a greater post-ischemic recovery in function, increased cardioprotection and 

levels of VEGF and IL-10, relative to adult bone marrow cells (BMC)-treated hearts 

or medium-injected controls. A marked decrease of pro-inflammatory cytokines was 

also observed after ESC treatment (Crisostomo, Abarbanell et al. 2008).  

Before therapeutic applications can be fully realized it has to be taken into 

consideration that ESC-based therapy has raised many important problems. Firstly 

ethical issues arise from the derivation of human ESCs from in vitro fertilized 

blastocysts and the isolation of human ESCs requires the destruction of the embryo. 

Furthermore there are technical issues in the directed differentiation into somatic cell 

populations, which is still inefficient and generates heterogeneous cell populations. 

Moreover transplanted ESCs might form teratoma, which is caused by the 

accumulation of undifferentiated cells in a non-cancerous tumour, and could be 

rejected immunologically due to the different genetic makeup between the patient 

and donor. Therefore the use of anti-rejection drugs with serious side effects would 

be required to avoid immune rejection problems. The risk of tumour formation is due 

to the innate pluripotency and high proliferative capacity of ESCs (Laflamme and 

Murry 2005, Swijnenburg, Sheikh et al. 2007).  

To reduce this possibility, recent research has focused on the implantation of 

predifferentiated ESC-derived endothelial or cardiomyocytes (Laflamme, Chen et al. 

2007, Tomescot, Leschik et al. 2007). For instance, ESCs pre-differentiation into 

cardiomyocytes can be promoted with the addition of tumour necrosis factor-alpha 

(TNF-α). Differentiated ESCs can be implanted in the infarcted myocardium in 

presence of a “cocktail” of prosurvival factors such as Matrigel, cyclosporine A, 

insulin-like growth factor-1 (IGF-1) and the caspase inhibitor ZVAD-fmk. 

Downstream analysis demonstrated the survival of the transplanted cells and their 

ability to improve myocardial function and recovery (Laflamme, Chen et al. 2007). 

In another work, ESCs-derived ECs transplanted in a mouse model of myocardial 

infarction, were shown to improve ventricular function and to promote 

neoangiogenesis without inducing teratoma formation, as reported in the control 

animals treated with ESCs (Li, Wu et al. 2007).  
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When ESC-derived ECs were injected intramuscularly into ischemic mouse limbs, 

increased limb salvage and blood perfusion were observed (Cho, Moon et al. 2007). 

Similarly, implantation of hESC-ECs in a hindlimb ischemia model of 

immunodeficient mice has demonstrated a therapeutic improvement of blood 

perfusion and limb salvage: transplanted hESC-derived ECs were successfully 

incorporated into the host circulation and significantly accelerated improvement of 

local blood flow (Sone, Itoh et al. 2007). 

Additionally, in a recent study, hESCs have been directly differentiated into ECs 

using a feeder- and serum-free protocol. Differentiated cells showed rapid loss of 

pluripotency markers and progressive induction of vascular markers, such as CD31 

and VE-cadherin and angiogenic growth factors, like VEGF; the cells also showed 

an increased expression of angiogenesis-associated microRNAs, including miR-126 

and miR-210, and EC morphology. In vitro, differentiated cells were able to produce 

NO, to migrate across a wound and to form tubular structures in presence or absence 

of Matrigel. In vivo, implantation of the cells previously differentiated for 10 days 

induced therapeutic neovascularisation, and hESC-derived ECs were incorporated 

into the blood-perfused vasculature of recipient mice (Kane, Meloni et al. 2010). 

Furthermore, mouse ESCs pretreated with retinoic acid to promote neuronal 

differentiation, were transplanted into an ischemic brain of an adult rat. After 1-8 

weeks, transplanted ESCs originated cells able to fill the lesion cavity and to express 

markers typical of neurons, oligodendrocytes, astrocytes and ECs. ESC-transplanted 

animals showed an increased recovery in neuronal function and behaviour as 

compared with the controls rats injected with adult mouse cortical cells or vehicle 

(Wei, Cui et al. 2005).   

Although the tumourigenesis and immunological issues connected with the use of 

ESCs have been partially addressed, the ethical debate associated with the use of 

human embryos is still ongoing. Furthermore, the number of available human ESC 

lines may also be insufficient for their therapeutic potential (Wobus and Boheler 

2005).  

In order to find a solution to all the issues involving the use of ESCs, scientists are 

searching for alternative sources of pluripotent cells, such as the generation of iPSCs. 

The ethical and immunological problems associated with the use of ESCs are 
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bypassed using iPSCs as they can be derived from somatic cell population isolated 

from the patient. 

iPSCs are able to differentiate into many cell types and, like ESCs, are considered a 

powerful cell source for regenerative medicine, such as vascular tissue engineering. 

These cells also show a huge potential for drug screening and for the construction of 

disease models by obtaining somatic cells from patients with specific diseases. 

 

Figure 17 iPSC technology for regenerative medicine and drug screening 

iPSCs generated from patient adult cells can differentiate into many different somatic cell types, 

which could be used for regenerative medicine applications, to screen new and safe drugs and to 

construct models of disease (Yamanaka 2009). 

 

Some research groups have already shown applications of iPSCs to treat disease 

states. For instance, it has been demonstrated that iPSCs can treat sickle cell anemia 

in vivo in mice. iPSCs reprogrammed from fibroblasts of mice affected by sickle cell 

anemia, have been differentiated into hematopoietic progenitor cells, after correction 

of the human sickle hemoglobin allele by gene-specific targeting. Mice can be 

rescued after transplantation with hematopoietic progenitors obtained in vitro from 

autologous iPS cells. These results prove that genetically modified iPSCs can be 

applied to treat diseases in mice.  
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In addition, skin fibroblasts from an 82 year-old woman with a familial form of 

amyotrophic lateral sclerosis, have been reprogrammed to iPSCs and differentiated 

into motor neurons, the cells affected by the disease (Dimos, Rodolfa et al. 2008).  

Similarly to what has been found for ESCs, iPSCs can be predifferentiated and 

transplanted into a mice model of hind-limb ischemia promoting vascular and
 
muscle 

regeneration via direct de novo differentiation and via paracrine mechanisms. 

Furthermore, their effect was stronger than that obtained with the control population, 

adult bone marrow mesenchymal stem cells (Lian, Zhang et al. 2010). In another 

study, iPSC-derived Flk1
+ 

cells were transplanted in a mouse model of hind limb 

ischemia and were shown to improve recovery and angiogenesis (Suzuki, Shibata et 

al. 2010). Furthermore, iPSCs directly injected into damaged areas after induction of 

ischemic stroke in the rat cortex were able to reduce infarct size, improve the motor 

function and attenuate the inflammation response (Chen, Chang et al. 2010). 

The use of patient specific iPSCs derived from adult tissues has opened the 

possibility of autologous regenerative medicine, but there are many limitations to the 

iPSC application in the clinical setting. These limitations are mainly due to the 

delivery of reprogramming factors that introduces risks of permanent transgene 

integration into the genome and to the oncogenicity of the reprogramming factors. 

Reprogramming factors such as the known oncogene c-Myc, although mostly 

silenced in iPSCs, can be reactivated and lead to tumourigenesis (Okita, Ichisaka et 

al. 2007).  Teratoma formation is indeed one of the most severe and common issues 

concerning the use of iPSCs and even small numbers of undifferentiated cells can 

originate teratomas (Yamanaka 2009). Moreover, most of the protocols used so far 

showed reprogramming efficiencies as low as 0.01% suggesting that the methods 

used to generate iPSCs need to be improved and new strategies will have to be 

developed (Hochedlinger and Plath 2009). 

However, new methods have been developed to reduce the risk of stable integration 

of the reprogramming factors in the genome of iPSCs during the reprogramming 

procedure [reviewed in (Muller, Daley et al. 2009)].  

Reprogramming can in fact be obtained using plasmids containing the four factors or 

by direct delivery of reprogramming proteins (Okita, Nakagawa et al. 2008, Kim, 

Kim et al. 2009), avoiding the risk of using retroviruses and lentiviruses which can 

javascript:glosspop('mesenchymal')
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be integrated into the host genome disrupting the normal gene expression. A number 

of studies are also focusing on enhancing the efficiency of the process, in particular 

by using specific chemicals, such as the TGF-β inhibitor Alk5i, which increases 

reprogramming in the absence of c-Myc (Lin, Ambasudhan et al. 2009), or small 

molecules that promote reprogramming (Xu, Shi et al. 2008). Further research into 

this field could thus produce a highly efficient method of reprogramming that does 

not involve genetic modification of the initial somatic cell.  

Another recently raised issue concerning the therapeutic application of iPSCs is 

about their immunogenicity. Although iPSCs might not show alloreactivity, if the 

iPSC harbors a genetic abnormality which is corrected before transplantation into the 

iPSC donor, then an immune response can occur (Fairchild 2010). It has been, in 

fact, demonstrated that abnormal expression in some cells derived from iPSCs can 

induce T-cell-dependent immune response in syngenic recipients (Zhao, Zhang et al. 

2011). Indeed the immunogenicity of the patient-specific iPSCs should be seriously 

evaluated before their clinical application. 

There is also a big concern about the consistency of the current methods used to 

assess pluripotency of the iPSCs lines. In a recent study it has been shown that 

amongst 122 published iPSC lines, only 21% of the researchers used the teratoma 

formation assay, one of the most important tests for pluripotency, to characterize 

these cell lines (Smith, Luong et al. 2009).  Furthermore, recent microarray analyses 

showed that there are still differences in the gene expression profiles of iPSC and 

ESCs. 

In conclusion, the recent innovative approaches in generating iPSCs have 

significantly advanced stem cell research. However, several technical issues still 

remain to be addressed, in order to exploit the full potential of iPSCs. 

However, despite success in pre-clinical settings, iPSC technology is not yet ready 

for transplanting cells into patients, because iPSCs, like ESCs, tend to form 

teratomas, and the current differentiation protocols are not designed to efficiently 

eliminate residual undifferentiated cells (Wernig, Zhao et al. 2008). 

Furthermore, the potential therapeutic use of iPSCs is also limited by the relatively 

little knowledge of their molecular and functional equivalence to ESCs. Indeed a 
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careful analysis of the genomic and epigenomic integrity of iPSCs as well the 

development of optimized differentiation protocols will be required to evaluate the 

functionality of iPSCs-derived specialized cells. 
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1.5 HYPOTHESIS AND AIMS OF THE STUDY 

 

The hypothesis in this work is that the VEGF-induced iPSC differentiation into an 

endothelial lineage is regulated by miRNAs and their specific signalling pathways. 

This project aimed to identify the mechanisms regulating iPSC differentiation into 

ECs, with a particular focus on miRNAs and their targets. 

Initially, we aimed to optimise a protocol to provide an efficient differentiation of 

iPSCs towards an EC lineage, through the use of collagen IV, VEGF and shear stress 

in different combinations. 

After establishing the optimal differentiation protocol, microRNA array technique 

was performed in collaboration with Dr. Anna Zampetaki, to identify changes in 

miRNA expression during the initial days of differentiation; this allowed us to 

investigate the crucial early changes in miRNA expression that drive the downstream 

differentiation process. In particular, we aimed to study the function of miRNAs 

selected from the array, able to drive the iPSC specific differentiation towards ECs, 

via activation of downstream targets.  

Next, we intended to elucidate the molecular targets involved in this process and the 

regulating mechanisms occurring between those, in order to clarify the miRNA-

regulated EC differentiation process. In an effort to find the miRNA targets, we 

performed bioinformatic in silico analysis and we then confirmed the results by 

evaluating target gene expression after miRNA overexpression or anti-miRNA-

mediated silencing. Furthermore, we aimed to study the direct effect of miRNA on 

specific 3’-UTR of its target using a luciferase reporter assay. Finally, our 

understanding of the miRNA-targets networks was furthered through modification of 

their expression during the iPSC differentiation process. 

Ultimately, iPSCs might represent an ethically and technically suitable source of 

cells for transplantation. iPSC derived-ECs could become useful for the treatment of 

cardiovascular diseases such as myocardial infarction, ischemia and atherosclerosis, 

in which EC death and dysfunction represent a critical initiation process.  
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Furthermore, an understanding of the molecular mechanisms that involve miRNA 

regulation during differentiation may accelerate the translation of this basic science 

to a clinical setting. The identification of molecular targets might translate into new 

treatments for patients affected by cardiovascular diseases; it might also offer 

potential applications for stem cell therapy, e.g. tissue engineering and endothelial 

repair in damaged vessels. 
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CHAPTER 2. MATERIALS AND METHODS 
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2.1 MATERIALS 

 

Cell culture media, serum and cell culture supplements were purchased from ATCC, 

Millipore, Gibco and PAA. Mouse recombinant VEGF165 and human recombinant 

TGF-β2 were purchased from Peprotech, aliquoted into stock solutions of 0.1mg/ml 

in BSA and stored at -20
o
C. Human TGFβ-2 quantikine ELISA kit was purchased 

from R&D systems. Mouse VEGF ELISA kit was purchased from Invitrogen. 

Mouse VEGF164 and TGFβ-2 neutralizing antibodies were purchased from R&D 

systems, aliquoted into stock solutions of 0.2mg/ml and 1mg/ml respectively in 

sterile PBS and stored at -20
o
C (normal IgG was used as control). SMAD3 inhibitor 

SIS3 was purchased from Calbiochem, aliquoted into stock solutions of 25mM in 

DMSO and stored at -20
o
C. PTEN inhibitor PTP bpV (phen) was purchased from 

Enzo Life Sciences, aliquoted into stock solutions of 25mM in DMSO and stored at -

20
o
C. Total RNAs were extracted with the RNeasy and miRNeasy kits purchased 

from Qiagen. Taqman microRNA Reverse Transcription kit, rodent Taqman 

microRNA assay stem loop primers and rodent preamplification primers were 

purchased from Applied Biosystems. Resulting cDNAs were used for quantitative 

real-time PCR using Taqman microRNA assay and Taqman universal PCR master 

mix reagents from Applied Biosystems. Rodent Taqman miRNA Arrays A and B 

were purchased from Applied Biosystems. MiR-20b and miR-21 precursors (Pre-20b 

and Pre-21) and the precursor control (Pre-Ctrl) 5nmol were purchased from Ambion 

AB and resuspended in 100µl sterile water to have a stock concentration of 50µM. 

1:10 dilution was applied to Pre-20b, Pre-21 and Pre-Ctrl for the transfection 

experiments. MiR-20b and miR-21 inhibitors (LNA-20b and LNA-21) and the 

inhibitor control (LNA-Ctrl) 5 nmol were purchased from Exiqon and resuspended 

in 100µl sterile water to have a stock concentration of 50µM. Lipofectamine™ 

RNAiMAX for miRNA transfection was purchased from Invitrogen.  The Luciferase 

Assay System and Renilla were purchased from Promega. DNA & siRNA 

cotrasfection reagent jetPRIME® was purchased from Polyplus-trasfection SA. 

Mission
®
 Sh-RNA for PTEN was purchased from SIGMA-ALDRICH. Polybrene 

for lentiviral infection was purchased from Millipore. Reporter plasmids pGL3-

control-PTEN-3’UTR-wild type and -mutant were created by Joshua Mendell 

http://products.invitrogen.com/ivgn/en/US/adirect/invitrogen?cmd=catProductDetail&productID=13778075
http://products.invitrogen.com/ivgn/en/US/adirect/invitrogen?cmd=catProductDetail&productID=13778075
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laboratory and distributed by Addgene (Addgene plasmid 21326 and 21327 

respectively). Matrigel for the in vitro angiogenesis assay was purchased from BD 

Biosciences. Purchased antibodies used for immunoblotting and their recommended 

dilutions are shown in Table 8. Primary antibodies used for immunoblotting were 

diluted in PBS containing 5% milk, 0.05 Tween
®
 20 (Sigma-Aldrich, Cat No P2287) 

and 0.02% sodium azide and stored at -20
o
C. Buffers made for the methods herein 

are shown in Table 7. 

 

2.2 METHODS 

 

2.2.1 CELL CULTURE OF mESC AND iPSCs 

mESCs (ES-D3, from ATCC) and iPSCs were cultured on gelatine-coated flasks 

(PBS containing 0.04% of gelatine from bovine skin, Sigma) in DMEM (ATCC) 

supplemented with 10% Fetal Bovine Serum ES cell qualified (Embriomax, 

Millipore), 100IU/ml penicillin and 100μg/ml streptomycin (Gibco), non essential 

aminoacids (NEAA) 100X (Gibco) (for mESC culture only), 10ng/ml recombinant 

human leukemia inhibitory factor (LIF, Millipore) and 0.1mM 2-mercaptoethanol 

(Gibco) in a humidified incubator supplemented with 5% CO2. The cells were 

passaged every 2 days at a ratio of 1:4 to 1:6.  

 

2.2.2 GENERATION OF MOUSE iPSCs 

iPSCs were generated in our laboratory starting from MEF isolated as stated in 

(Takahashi, Okita et al. 2007), using a similar method stated in (Kaji, Norrby et al. 

2009). Briefly, 2 x10
6
 MEF were nucleofected with 2µg of linerised 

pCAG2LMKOSimO (Addgene) using the MEF Nucleofector® Kit 2 and nuclefector 

programme T-020 (Amaxa) and re-plated on gelatine-coated tissue culture plastic 

with standard MEF media. The media was then changed to ESC media on day 1. 

Cells were then re-nucleofected on day 4 and maintained in ESC media. iPS-like 

colonies were picked between day 18-22 and expanded as described before 

(Takahashi, Okita et al. 2007). Colonies were expanded, characterised for ESC 

markers and mOrange expression, indicating exogenous gene expression. iPSC 



93 

 

colonies were tranfected using Fugene with pCre-GFP (Addgene) according to the 

manufactures instructions, in order to excise the remaining transgene plasmid. Two 

days post transfection, GFP positive cells were selected using a cell sorter and 

clonally re-seeded and expanded. Successful Cre-excision of exogenous DNA was 

confirmed by genomic DNA PCR, as previously demonstrated in (Kaji, Norrby et al. 

2009), and immunoflorescence to show lack of mOrange expression.  

 

2.2.3 DIFFERENTIATION 

Mouse ESCs were seeded (7-10x10
3
/cm

2
) on type IV mouse collagen (5µg/ml, VWR 

International) coated flasks and maintained for four days in differentiation medium 

(DM) containing alpha MEM (Gibco) supplemented with 10% FBS (Gibco), 0.2mM 

2-mercaptoethanol and 100u/ml penicillin and 100μg/ml streptomycin. 

Subsequently, c-kit
+
 progenitor cells were isolated with magnetic-activated cell 

separation magnetic beads as described below, and seeded on collagen IV coated 

wells and maintained in differentiation medium as mentioned before. After 3 days of 

differentiation, shear stress was applied using an orbital shaking platform (P0S-330 

Grant-Bio), at an orbital speed of 120 rpm which correspond to 8 dynes/cm
2
 as 

previously described (Dardik, Chen et al. 2005), for 24h and 48h in presence or 

absence in the media of 50ng/ml vascular endothelial growth factor (VEGF, 

Peprotech). The cells in the central area of the plate, which are subjected to 

oscillatory stress as compared to the directional and laminar flow in the periphery, 

were removed by scraping before proceeding to further analysis (Chakraborty, 

Chakraborty et al. 2012). Differentiation of iPSCs was obtained by seeding them on 

type IV mouse collagen (5µg/ml) coated dishes in differentiation medium (DM) that 

contains alpha-MEM supplemented with 10% FBS (Gibco), 0.05mM 2-

mercaptoethanol and 100u/ml penicillin and 100μg/ml streptomycin. The medium 

was supplemented with 50ng/ml VEGF and the cells were maintained under these 

conditions for 3, 5 and 7 days when samples were harvested. The number of iPSCs 

seeded on collagen IV for the differentiation was 1.3x10
4
/cm

2
 (d3), 6.6x10

3
/cm

2 
(d5) 

and 3.3x10
3
/cm

2 
(d7). Shear stress studies were performed on iPSCs differentiated 

for three days, shear stress was applied for 48h in presence or absence in the media 

of 50ng/ml VEGF. 
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2.2.4 CELL SORTING 

Pre-differentiated mESCs were trypsinized and centrifuged at 1000rpm for 5min. 

The cell pellet was resuspended in 60µl of magnetic-activated cell separation buffer 

(2mM EDTA, 0.5% bovine serum albumin, BSA) to which 40µl of CD117 

MicroBeads (Miltenyi) were added. Cell suspension was incubated for 15min at 4-

8
o
C and then washed in 2.5ml of buffer and centrifuged at 1000rpm for 5min. 

Meanwhile, a MS magnetic-activated cell separation column (Miltenyi) was placed 

in the magnetic field of a magnetic-activated cell separator and washed with 500µl of 

buffer. The cell pellet was resuspended in 500µl of buffer and applied onto the 

column. The unlabeled cells that do not bind to the column pass through and are 

discarded. The column was washed further three times by adding 500µl of buffer 

each time. The column was then removed from the separator and placed in a suitable 

collection tube. Finally, 1ml of buffer was pipetted onto the column and the 

magnetically labelled cells were flushed out by pushing the plunger into the column. 

 

2.2.5 HARVESTING CELLS 

The supernatant medium was removed or collected from the flasks or dishes and 

cells were washed with cold PBS (4
o
C). An additional volume (5-10ml) of cold PBS 

was added and cells were scraped off, decanted into 15ml tubes and centrifuged at 

1000rpm for 5min. Supernatant PBS was discarded and cells were resuspended in 

1ml of which 750μl and 250μl were transferred to micro centrifuge tubes and 

centrifuged shortly at 4
o
C (high speed) for protein and RNA extraction, respectively. 

 

2.2.6 RNA EXTRACTION  

RNA extraction was performed using RNeasy Mini Kit for isolation of total RNA 

from animal cells (Qiagen), according to the manufacturer’s protocol at room 

temperature with a centrifugal force of 8000 g unless otherwise stated. The cell pellet 

was resuspended in 350μl of RLT lysis buffer that disrupt the cell membrane and 

organelles to release total RNA contained in the sample. The lysate was then 

transferred into a QIAshredder spin column and centrifuged for 2min to create a 

homogenous lysate by shearing high-molecular-weight genomic DNA and other 

cellular components. An equal volume of 70% ethanol was added to the 
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homogenized lysate to provide appropriate conditions for the RNA to bind to the 

RNeasy spin column membrane. At this point the mixture was applied to the RNeasy 

mini column placed in a 2ml collection tube and centrifuged for 30s and the flow 

though obtained was discarded. 350μl of RW1 washing buffer were added to the 

column followed by centrifugation for 15s, and the flow through was once again 

discarded. On-column DNase digestion was then performed mixing gently 10μl of 

DNase I stock solution to 70μl of buffer RDD and adding the DNase I incubation 

mix directly to the RNase spin column membrane (RNase-Free DNase Set, Qiagen). 

After placing the reaction for 15min at room temperature, 350μl of RW1 washing 

buffer were added to the column followed by centrifugation for 15s. The flow 

through was discarded and 2 more washes were carried out with 500μl of RPE 

buffer. The washing buffers are applied to remove all contaminants. The flow 

through was discarded and an additional centrifugation of 1min took place to remove 

all remaining solution that could reduce the purity of the RNA extract. To elute the 

RNA, the RNeasy column was transferred to a clean 1.5ml autoclaved micro 

centrifuge collection tube and 30μl of RNase-free water was added to the RNeasy 

column membrane followed by spinning for 1min. The RNA concentration was 

measured using a Nanodrop Spectrophotometer. 

 

2.2.7 REVERSE TRANSCRIPTION  

cDNA was synthesised from 1μg total RNA. Reverse transcription was performed 

using the Improm-II reverse transcription system (Promega) in a 25μl reaction as 

outlined below. Mix A was heated at 70
o
C for 5min to allow denaturation of cDNA. 

After adding Mix B, the samples were kept at 4
o
C for 5min and 25

o
C for further 

5min and then at 42
o
C for 90min for the extension step to take place. Finally a 

temperature of 72
o
C was applied for 5min in order to deactivate the enzyme (Table 

1). The cDNA obtained was diluted with 75μl of DEPC-treated water to obtain a 

final concentration of 10ng/μl. 
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Table 1 Reverse Transcription reaction 

Component Volume (μl) Final concentration 

Mix 

A 

Random primers 

Improm II 5x reaction Buffer 

25mM MgCl2 

25mM dNTPs 

RNA 

DEPC-treated water 

0.2 

5 

3 

1 

10 

to 19,2μl 

0.1 

1X 

3mM 

1mM 

1μg 

- 

Mix 

B 

  

 40IU/μl  RNasin ribonuclease inhibitor 

Improm II reverse transcription 

DEPC-treated water 

 

0.625 

1 

to 5,8μl 

25IU 

1IU 

- 

 

2.2.8 POLYMERASE CHAIN REACTION 

50ng of cDNA was used to perform polymerase chain reaction using 2x PCR Master 

Mix (containing 50units/ml Taq DNA polymerase, 400μM each: dATP, dGTP, 

dCTP, dTTP, and 3mM MgCl2) from Promega. The reaction mix for 25µl reaction 

volume and primer parameters are given in the table below (Table 2 and 3). 

 

Table 2 PCR reaction 

Component Volume (μl) Final concentration 

cDNA 

PCR Master Mix, 2X 

20μM Forward Primer 

20μM Reverse Primer 

DEPC-treated water 

5 

12.5 

1 

1 

to 25μl 

50ng 

1x 

0.8μM  

0.8μM  

- 

 

Primers specific to the PCR template were designed from human mRNA sequences 

using the Primer-BLAST tool (www.ncbi.nlm.gov.uk/tools/primer-blast). All 

primers were ordered from Sigma-Aldrich, resuspended in DEPC water and the 

stocks (100mM) were stored at -80 
o
C. Working solutions of 20mM were kept at -20 

o
C. 

 

http://www.ncbi.nlm.gov.uk/tools/primer-blast
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Table 3 Primer parameters and their sequence 

Gene 

Target 
Sequence (5ˈ 3ˈ) 

Start 

Position 

End 

Position 

Annealing 

Temperature 

(
o
C) 

Cycles 

Product 

Size 

(bp) 

βactin 

Forward 

βactin 

Reverse 

AGCCATGTACGTAGCCATCC 

CTCTCAGCTGTGGTGGTGAA 

469 

696 

488 

677 
55 30 227 

CD31 

Forward 

CD31 

Reverse 

ATGACCCAGCAACATTCACA 

CACAGAGCACCGAAGTACCA 

1572  

1771 

1591 

1752 
55 30 199 

VE-cad 

Forward 

VE-cad 

Reverse 

GACCAGTGACAGAGGCCAAT 

CGGAGGGTTGTCATTCTCAT 

1283 

1481 

1302 

1462 
55 35 198 

vWF 

Forward 

vWF 

Reverse 

TTCATCCGGGACTTTGAGAC 

AGCCTTGGCAAAACTCTTCA 

5185 

5385 

5204 

5366 
55 35 200 

Flk1 

Forward 

Flk1  

Reverse 

GGCGGTGGTGACAGTATCTT 

GTCACTGACAGAGGCGATGA 

498 

659 

517 

640 
55 30 161 

eNOS 

Forward 

eNOS 

Reverse 

GACCCTCACCGCTACAACAT 

GCTCATTTTCCAGGTGCTTC 

1121 

1319 

1140 

13O0 
55 35 198 

 

The PCR protocols were optimized: Initial denaturation, 95
o
C for 5min; 30-35 cycles 

of 94 
o
C for 30s, 58 

o
C for 30s and 72

 o
C for 1min; Final extension 72 

o
C for 10min. 
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2.2.9 QUANTITATIVE REAL TIME POLYMERASE CHAIN 

REACTION (Q-PCR) 

Total RNA was isolated as previously described. Relative gene expression was 

detected by Q-PCR using the Eppendorf Mastercycler® ep realplex. Each real-time 

PCR reaction was performed in duplicate. Each real-time reaction contained 20ng 

cDNA, 6.5μl DEPC-treated water and 0.75μl of each 20mΜ forward and reverse 

primers and 10μl of sybr green reaction mix (Applied Biosystems). The reaction 

mixture was placed in each well of a 96-well plate (Eppendorf, twin.tec real-time 

PCR plates) and placed into a sequence detection system 7000 (Eppendorf). The Q-

PCR conditions were 5min at 95
o
C and then 40 cycles of 95

o
C for 15s and 60

o
C for 

30s followed by 10min of 95
o
C to establish the melting curve of the primers. The 

threshold cycle (Ct) values were automatically obtained in excel format and the 18s 

RNA Ct values served as the internal endogenous control. For every sample, Q-PCR 

was performed in duplicate. The primers used for Q-PCR were designed using a 

software provided by DNA Integrated Technologies 

(http://eu.idtdna.com/scitools/Applications/RealTimePCR/) and are shown below 

(table 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://eu.idtdna.com/scitools/Applications/RealTimePCR/
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Table 4 Real Time PCR primer sequences 

Gene symbol Gene name Sequence (5ˈ3ˈ) 

VE-cad Vascular endothelial cadherin 5 

AAGAAACCGCTGATCGGCA 

TCGGAAGAATTGGCCTCTGTC 

CD31 PECAM-1 

CAAACAGAAACCCGTGGAGAT 

ACCGTAATGGCTGTTGGCTTC 

Flk1 VEGFR-2 

TGAAATTGAGCTATCTGCCGG 

TTTGAAGGTGGAGAGTGCCAG 

vWF Von Willebrand Factor 

GGCTGTGCGGTGATTTTAACAT 

CGTTTACACCGCTGTTCCTCA 

eNOS Endothelia nitric oxide synthase 

GGCTGGGTTTAGGGCTGTG 

CTGAGGGTGTCGTAGGTGATG 

18s 

 

18s ribosomal RNA 

CCCAGTAAGTGCGGGTCATAA 

CCGAGGGCCTCACTAAACC 

SMA Smooth Muscle Actin 

TCCTGACGCTGAAGTATCCGAT 

GGCCACACGAAGCTCGTTATAG 

SM22 Smooth muscle 22 

GATATGGCAGCAGTGCAGAG 

AGTTGGCTGTCTGTGAAGTC 

CNN1 Calponin1 

GGTCCTGCCTACGGCTTGTC 

TCGCAAAGAATGATCCCGTC 

SmMHC 
Smooth muscle Myosin Heavy 

Chain 

AAGCAGCCAGCATCAAGGAG 

AGCTCTGCCATGTCCTCCAC 

GATA4 GATA Binding Protein 4 

TCCAGTGCTGTCTGCTCTAAGC 

TGGCCTGCGATGTCTGAGT 

MEF2C Myocyte Enhancer Factor 2C 

AAGCCAAATCTCCTCCCCCTAT 

TGATTCACTGATGGCATCGTGT 

Nkx 6.1 NK6 Homeobox 1 

GCCTGTACCCCCCATCAAG 

ACGTGGGTCTGGTGTGTTTTC 

AFP alpha-fetoprotein 

ACCCGCTTCCCTCATCCT 

AAACTCATTTCGTGCAATGCTT 

TUBB3 Tubulin beta3 

TCCGTTCGCTCAGGTCCTT 

CCCAGACTGACCGAAAACGA 

Krt 2–5 Keratin 2-5 

CCCTCTGAACCTGCAAATCG 

TGATCTGCTCCCTCTCCTCAGT 

TGF-β2 

Transforming Growth 

Factor beta 2 

CTTCGACGTGACAGACGCT 

GCAGGGGCAGTGTAAACTTATT 
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PITX2 
Paired-like Homeodomain 

Transcription Factor 2 

TGGACCAACCTTACGGAAGC 

GACAGAGACGTTGACGTGAGG 

TGFβI 

Transforming Growth 

Factor beta 1 

CAGCACGGCCCCAATGTAT 

GGGACCTTTTCATATCCAGGAA 

TGF-βRIII 

Transforming Growth 

Factor beta Receptor III 

GGTGTGAACTGTCACCGATCA 

GTTTAGGATGTGAACCTCCCTTG 

HIF-1α 
Hypoxia Inducible Factor 1, alpha 

subunit 

ACCTTCATCGGAAACTCCAAAG 

CTGTTAGGCTGGGAAAAGTTAGG 

VEGFA 
Vascular Endothelial Growth 

Factor A 

CTGCCGTCCGATTGAGACC 

CCCCTCCTTGTACCACTGTC 

TCF4 Transcription Factor 4 

AAAGTCCGAAAAGTTCCTCCG 

CTCCATAGCCCGGCTGATT 

WNT1 
Wingless-related MMTV 

Integration Syte 1 

GGTTTCTACTACGTTGCTACTGG 

GGAATCCGTCAACAGGTTCGT 

RhoB Ras Homolog Family Member B 

GTGCCTGCTGATCGTGTTCA 

CCGAGAAGCACATAAGGATGAC 

Spry1 Sprouty Homolog 1 

ATGGATTCCCCAAGTCAGCAT 

CCTGTCATAGTCTAACCTCTGCC 

SRY Sex Determing Region 1 

CAAGATGCTGGGTAAGTGCG 

CCTTTCCGAACAGCGTTGTC 

Vcl Vinculin 

TGGACGGCAAAGCCATTCC 

GCTGGTGGCATATCTCTCTTCAG 

Pdcd4 Programmed Cell Death 4 

CCACTGACCCTGACAATTTAAGC 

TTTTCCGCAGTCGTCTTTTGG 

Timp3 
TIMP Metallopeptidase Inhibitor 

3 

CTTCTGCAACTCCGACATCGT 

GGGGCATCTTACTGAAGCCTC 

PTEN Phosphatase and Tensin Homolog 

ACAATTCCCAGTCAGAGGCG 

ACTGAGGATTGCAAGTTCCG 

REGFX1 Regulatory Factor X1 

GGCAGCCAGAAGCAGTATGT 

GCACCTTCCGATACGGTGA 

TNF Tumor Necrosis Factor 

CCCTCACACTCAGATCATCTTCT 

GCTACGACGTGGGCTACAG 

ASPN Asporin 

AAGGAGTATGTGATGCTACTGCT 

ACATTGGCACCCAAATGGACA 

BMRII 
Bone Morphogenetic Protein 

Receptor, type II 
TTGGGATAGGTGAGAGTCGAAT 
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TGTTTCACAAGATTGATGTCCCC 

Pax3 Paired Box 3 

TTTCACCTCAGGTAATGGGACT 

GAACGTCCAAGGCTTACTTTGT 

CCND1 Cyclin D1 

AGACCTGTGCGCCCTCCGTA 

GGCCAGCGGGAAGACCTCCT 

LEF1 
Lymphoid Enhancer Binding 

Factor 1 

AGAGAAAGGAGCAGGAGCCAAA 

ACACTCAGCAACGACATTCGC 

ID2 Inhibitor of DNA Binding2 

GGACCTGCAGATCGCCCTGG 

TGGACGCCTGGTTCTGTCCA 

TCF1 HNF1 Homeobox 1 

TGGCCCCTCCTCGATGTCCC 

GGAGGCACCATCCAACGGGC 

END1 Endothelin 1 

GCACCGGAGCTGAGAATGG 

GTGGCAGAAGTAGACACACTC 

AXIN2 Axin2 

TGACTCTCCTTCCAGATCCCA 

TGCCCACACTAGGCTGACA 

Ctnnb1 Catenin, beta1 

TGCAGCTTCTGGGTTCCGATGATA 

AGATGGCAGGCTCAGTGATGTCTT 

GSK3A 
Glycogen Synthase Kinase 3 

alpha 

AGCCCAATGTGTCCTACATCTGCT 

AGTAGCTCAGCAAGTACACAGCCA 

GSK3B Glycogen Synthase Kinase 3 beta 

TCCGAGGAGAGCCCAATGTTTCAT 

TGGACGTGTAATCAGTGGCTCCAA 

 

 

 

2.2.10 AGAROSE GEL ELECTROPHORESIS 

A 1.5% Agarose (Sigma) gel, was made with Tris-Acetate EDTA buffer and 0.01 % 

safeview (NBS), and placed in the electrophoresis apparatus immersed in 1x Tris-

Acetate EDTA buffer. Samples were loaded after the addition of 6x DNA Loading 

dye (30% glycerol, 0.3% bromophenol blue). The electrophoresis was performed at 

180V for ~25min and visualised under ultraviolet light. 
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2.2.11 MiRNA EXTRACTION  

Extraction of total RNA including miRNA was performed using miRNeasy Mini Kit 

(Qiagen). It was performed according to the manufacturer’s protocol at room 

temperature with a centrifugal force of 8000 x g unless otherwise stated. After 

harvesting the cells as described above, the cell pellet was disrupted by adding 700μl 

of QIAazol Lysis Reagent to up to 2x10
6
 cells and pipetting to mix well. Disruption 

of plasma membranes of cells and organelles is required to release all the RNA 

contained in the sample. The tube containing the homogenate was then placed on the 

benchtop for 5min. 140μl of chloroform were added to the tube shaking it vigorously 

for 15s and the tube was left at room temperature for further 2-3min. At this point 

the homogenate was centrifugated for 15min at 12000 x g at 4°C. After 

centrifugation the sample separated in three phases: an upper, colorless, aqueous 

phase containing RNA; a white interphase; and a lower, red, organic phase. The 

volume of the aqueous phase, approximately 350μl, was then transferred to a new 

collection tube and 1.5 volumes (usually 525μl) of 100% ethanol were added mixing 

thoroughly by pipetting several times. Up to 700μl of the sample were pipetted into 

an RNeasy mini spin column in a 2ml collection tube and the sample was centrifuged 

at 8000 x g for 15s and the flow though obtained was discarded. 700μl of RWT 

washing buffer provided by the kit were then added to the column and another 

centrifugation at 8000 x g for 15s was performed; the flow through was once again 

discarded. Two more washes were carried out with 500μl of RPE buffer. The 

washing buffers are applied to remove all contaminants. The flow through was 

discarded and an additional centrifugation of 1min took place to remove all 

remaining solution that could reduce the purity of the RNA extract. To elute the 

RNA, the RNeasy column was transferred to a clean 1.5ml autoclaved micro 

centrifuge collection tube and 30μl of RNase-free water was added to the RNeasy 

column membrane followed by spinning for 1min. The RNA concentration was 

measured using a Nanodrop Spectrophotometer.  

 

2.2.12 REVERSE TRANSCRIPTION AND PREAMPLIFICATION 

A fixed volume of 2μl of RNA solution from the 30μl eluate was used as input in 

each reverse transcription reaction. miRNAs were reverse transcribed using the 

Megaplex reverse transcription Primers which is a set of two predefined pools 
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(Rodent Pools A and B v3.0) from Applied Biosystem. Reverse transcription 

reaction was performed according to the company’s recommendations combining 

2μl of RNA with 0.8μl of Pooled Primers 0.2μl of 100mmol/L dNTPs with dTTP, 

0.8μl of 10x Reverse-Transcription Buffer, 0.9μl of MgCl2 (25mmol/L), 1.5μl of 

Multiscribe Reverse-Transcriptase, 0.1μl of RNAsin (20U/μl) to a final volume of 

7.5μl. The reverse transcription-PCR reaction was set as follows: 16°C for 2min, 

42°C for 1min and 50°C for 1s for 40 cycles and then incubation at 85°C for 5min 

using a Veriti thermocycler (Applied Biosystems). The reverse transcription reaction 

products were further amplified using the Megaplex PreAmp Primers (Rodent 

Primers A and B v3.0). The PreAmp Primers significantly enhance the ability to 

detect low-expression miRNAs, enabling the generation of a comprehensive 

expression profile using as little as 1ng of input total RNA. A 1μl aliquot of the 

reverse transcription product was combined with 5μl of Pre-amplification Mastermix 

(2x), 1μl of Megaplex PreAmp Primers (10x) to a final volume of 10μl. The pre-

amplification reaction was performed by heating the samples at 95°C for 10min, 

followed by 12 cycles of 95°C for 15s and 60°C for 4min. Finally, samples were 

heated at 95°C for 10min to ensure enzyme inactivation. Pre-amplification reaction 

products were diluted to a final volume of 40μl and stored at -20°C.  

 

2.2.13 TAQMAN miRNA ARRAY 

The expression profile of miRNAs in the samples was determined using the Rodent 

Taqman miRNA Arrays A and B (Applied Biosystems), which is a set of two 384-

well microfluidic cards (Array A and Array B v3.0). The arrays enable quantification 

of gene expression levels of 375 miRNAs per pool and are specific to human, mouse 

or rat. Five endogenous controls and a negative control were included in each array 

for data normalization. PCR reactions were performed using 450μl of the Taqman 

Universal PCR Master Mix No AmpErase UNG (2x) and 9μl of the diluted pre-

amplification product to a final volume of 900μl. 100μl of the PCR mix were loaded 

to each port of the Taqman miRNA Array. The fluidic card was then centrifuged and 

mechanically sealed. Real-Time PCR was carried out on an Applied Biosystems 

7900HT thermocycler using the manufacturer’s recommended programme.  
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2.2.14 TAQMAN qPCR ASSAY 

Taqman miRNA assays were used to assess the expression of individual miRNAs. 

0.5μl of the diluted pre-amplification product were combined with 0.25μl of Taqman 

miRNA Assay (20x) (Applied Biosystems) and 2.5μl of the Taqman Universal PCR 

Master Mix No AmpErase UNG (2x) to a final volume of 5μl. QPCR was performed 

on an Applied Biosystems 7900HT thermocycler at 95°C for 10min, followed by 40 

cycles of 95°C for 15s and 60°C for 1min. All samples were run in duplicates and 

standardized to miR-202, 135 and RNU6b using SDS2.2 (Applied Biosystems) 

software. 

 

2.2.15 MiRNA TRANSIENT TRANSFECTION 

To alter miR-20b and miR-21 levels in iPSCs differentiated in presence of VEGF for 

3 days, cells were cultured to 60–70% confluence, and transfected with the pre-20b 

and pre-21, the negative control precursor miRNA (Ambion), miR-20b and miR-21 

inhibitor, and the negative control of miRNA inhibitor (Exiqon) using 

Lipofectamine™ RNAiMAX in serum-free alpha MEM medium. The final 

concentration of the oligomers was 50µM for LNA-20b, LNA-21 and the LNA-Ctrl 

and 5µM (1:10 diluition) for pre-20b, pre-21 and the pre-Ctrl. Briefly, for each petri 

dish we removed complete DM and we added 5ml of serum-free alpha MEM 

medium. In sterile tubes we prepared mastermix A containing 394µl of serum-free 

alpha MEM and 6µl of precursors/inhibitors/controls; then we prepared mastermix B 

containing 400µl of serum-free alpha MEM and 25µl of Lipofectamine™ 

RNAiMAX. We indeed combined mastemix A and B mixing gently and incubating 

for 10min at room temperature. Next, we added the precursor/inhibitor/controls –

Lipofectamine complexes to each petri dish, mixing gently. After 5h, an equal 

volume of fresh alpha MEM containing 20% FBS, but without GP, was added to the 

transfection medium. 24h after transfection, the media was refreshed with complete 

DM until the next day, when cells were harvested and RNA and protein expression 

was analyzed by Q-PCR and Western blot, respectively. The above mentioned 

protocol has been scaled down to accommodate different cell numbers. 

 

http://products.invitrogen.com/ivgn/en/US/adirect/invitrogen?cmd=catProductDetail&productID=13778075
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2.2.16 PROTEIN EXTRACTION 

The cell pellet was resuspended in 30-50μl of a protein lysis buffer (50mM Tris-Cl 

pH 7.5, 150mM NaCl, 1mM EDTA pH 8.0). The lysate was then sonicated with the 

Branson Sonifier 150 at the lowest setting for 12s at 4
o
C and incubated on ice for at 

least 20min. The lysate was then centrifuged at full speed for 2min at 4
o
C. The 

supernatant was transferred to a new tube and the protein level was detected using a 

Biorad Protein Assay. Briefly, 2μl of the protein lysate was mixed with 998μl of the 

Bio-Rad Reagent (diluted 1:5 in water) and incubated at room temperature for 5min. 

Duplicates were measured using the Bio-Rad Spectrophotometer 3000. Lysis buffer 

was used as the blank measurement. 

 

2.2.17 WESTERN BLOT 

30-50μg of protein was mixed with 1X SDS loading buffer and heated at 94
o
C for 

10min before loading onto NuPage®, 6-8% Bis-Tris gel immersed in NuPage® 

MOPS SDS running buffer in a XCell SureLock™ Mini-Cell (Life technologies 

(Novex®). Protein ladder (Precision Plus Protein Ladder, Bio-Rad) was loaded 

simultaneously and the samples were run at 160V. The gel was then transferred onto 

a PVDF membrane (Amersham, hypond-P) with the XCell™ Blot Module 

(Invitrogen) at 30V for 2h immersed in transfer buffer. The membrane was then 

blocked with 5% milk in PBS-Tween and then incubated overnight at 4
o
C in the 

primary antibody solution. The primary antibodies used are shown below (Table 5).  
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Table 5 Primary antibodies used in Western Blotting 

Primary Antibody 
Dilution (in 5% milk in 

PBS-Tween) 
Company of origin 

Rabbit anti-VE-cad 1:1000 Abcam 

Rabbit anti-CD31 1:750 ABBiotec 

Goat anti-vWF 1:1000 Santa Cruz 

Rabbit anti-Flk1 1:1000 Abcam 

Rabbit anti-eNOS 1:1000 Abcam 

Goat anti-Akt 1/2 1:200 Santa Cruz 

Rabbit anti-PSer473 

AKT  

1 :200 Santa Cruz 

Rabbit anti-PTEN  1:1000 New England Biolabs 

Mouse anti-GAPDH 1:5000 Abcam 

 

 

The membranes were incubated in the primary antibody (diluted in PBS-Tween 

containing 5% milk) overnight at 4
o
C. Secondary antibodies diluted in 5% milk 

PBS-Tween (1:3000) were incubated in room temperature for 1h after washing with 

PBS-Tween (10min x3). Further washing was then carried out before addition of 

ECL detection solutions (GE healthcare, 5min). Exposure of films (Amersham, 

Kodak) was carried out using the Compact X4 (Xograph Imaging System). 

 

2.2.18 INDIRECT IMMUNOFLUORESCENCE ASSAY  

Cells were trypsinised and resuspended in medium and 4x10
3
 and 8x10

3
 cells (for 3 

or 5 days of differentiation respectively) were seeded on each well of an 8-chamber 

slide coated with gelatine (for undifferentiated iPSCs that were used as negative 

control) or collagen IV (for iPSCs cultured in DM with VEGF). Three to five days 

after seeding, medium was discarded and cells were washed twice with warm PBS. 

The cells were then fixed with 4% paraformaldehyde in PBS for 20min in room 

temperature. They were then washed x3 with PBS and permeabilised with 0.1% 

Triton-X-100 in PBS for 10min in room temperature. An additional wash with PBS 

took place at room temperature for 5min.  
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Frozen sections of in vivo matrigel plaque were instead fixed in 100% acetone for 

10min and then washed x3 with PBS. All samples were then blocked with 5% 

normal swine serum in PBS and incubated for 30min at room temperature. The 

primary antibodies used and the dilutions in which they were used are shown in 

Table 6 and the incubation was carried out overnight at 4
o
C. The samples were once 

again washed with PBS (10min x3) and secondary antibodies were applied in the 

concentrations shown in Table 10, for 30min at 37
o
C. Samples were washed 3 x 

5min before counterstaining with DAPI (1:1000 in PBS) for 2min at room 

temperature. They were then mounted with fluorescent mounting media (Dako) and 

images were taken with the Axio Imager M2 microscope and AxioVision Digital 

Imaging System (Carl Zeiss Ltd) or SP5 confocal microscopy. 

 

Table 6 Primary and secondary antibodies used in immunofluorescence staining 

Primary 

Antibody 

Dilution (in swine 

serum) 

Company of 

origin 

 

Secondary Antibody  conjugated  

to Fluorophore 

 

 

Dilution  

(in PBS) 

Rabbit anti-

CD144 
1:100 Abcam 

Anti-rabbit conjugated to FITCI 

(Alexa488) 
1:1000 

Goat anti-

CD-31 
1:50 Santa Cruz 

Anti-goat conjugated to FITCI 

(Alexa488) 
1:1000 

Goat anti-

vWF 
1:50 Santa Cruz 

Anti-goat conjugated to FITCI 

(Alexa488) 
1:1000 

Rabbit anti-

eNOS 
1:100 Abcam 

Anti-rabbit conjugated to FITCI 

(Alexa488) 
1:1000 

 

 

2.2.19 IN VITRO AND IN VIVO TUBE FORMATION ASSAY 

iPSCs were differentiated in presence of VEGF for 4 days and then transfected with 

Pre-21, Pre-ctrl, LNA-21 and LNA-ctrl. In vitro and in vivo angiogenesis assays 

were performed after further 48h. For the in vitro assay, 100μl of complete Matrigel 

(BD) was layered in each well of an 8 well chamber slide and let to solidify. Cells 

were detached and counted and 4x10
4
 cells were plated in each well; quadruplicates 

were performed for each condition. Representative images were acquired 7-8h later 
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with Axioplan 2 imaging and total tube length was quantified with ImageJ image 

processing program.  

In vivo angiogenesis was performed by mixing 5x10
5
 cells with 200μl Matrigel and 

injecting it subcutaneously in mice (C57BL/6), where it rapidly solidifies, forming a 

plug; triplicates were performed per each condition. After 7 days, mice were 

euthanized, and the skin of the mouse was pulled back to expose the Matrigel. Plugs 

were then removed and fixed in liquid nitrogen and cryosections were prepared. 

Some of the cryosections were stained with hematoxylin, which colours nuclei of 

cells blue and eosin, which colours other structures in various shades of red. Some of 

the cryosections were stained with CD31 and VE-cadherin antibodies. 

Immunostaining was assesed by confocal imaging and capillary density was 

calculated as the number of capillary number per mm
2
. 

In vitro angiogenesis assay was performed using the protocol described above also 

after 7 days of differentiation in presence of VEGF or TGF-β2 treatment. 

 

2.2.20 BACTERIA CULTURE FROM STAB AND PLASMID 

PURIFICATION  

Using a sterile pipette tip the bacteria was touched within the punctured area of the 

stab culture and streaked on Ampicilin LB Agar sterile plates (50μg/ml) and 

incubated overnight at 37
o
C. Single colonies were picked and amplified in LB 

containing Ampicilin (100μg/ml) overnight. Plasmid purification was then 

performed using a QIAprep Spin Miniprep kit (Qiagen) as instructed by the 

manufacturer.   

Verification of plasmid size was performed by running the plasmidic DNA on a 1% 

agarose gel. 

 

2.2.21 LENTIVIRAL PARTICLE PRODUCTION  

Lentiviral particles were produced by transfecting HEK 293T with shPTEN pLKO.1 

plasmid (Sigma Mission) together with the packaging plasmids. Non-targeting 

pLKO.1 plasmid was used to obtain non-targeting lentiviral particles. Cells were 

plated at 60% confluency, the next day cells were transfected using a mix of Fugene 

(Promega) and 4.5μg shRNA-PTEN (or NT), 3.6μg pCMV-dR8.2 packaging 
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plasmid and 0.9μg pCMV-VSV-G envelope plasmid (Addgene) at a ratio of 3:1 (μl 

of Fugene:μg of plasmids). During the overnight transfection period, cells were kept 

in DMEM containing 2% FBS without antibiotics. The media was changed the next 

morning to complete medium and the supernatants containing the lentivirus particles 

were harvested 48h and 96h after transfection, pooled and then filtered through a 

0.45 μm filter. The transduction unit (TU) was calculated as previously described 

(Margariti, Zampetaki et al. 2010). 

 

2.2.22 shRNA LENTIVIRAL INFECTION 

Knockdown of PTEN was achieved by infecting iPSCs differentiated for 3 days in 

DM containing VEGF 50ng/ml with lentiviruses expressing with short hairpin RNA 

(shRNA). Lentiviruses were generated as described before from plasmids encoding 

for shRNA specific for PTEN or non-coding control. Cells were infected with 

shPTEN or the non targeting control (10
7
TU/ml) complete growth medium 

supplemented with 10μg/ml of polybrene for 16-24h. The viruses were then removed 

and the cells were transfected with LNA-21 and LNA-Ctrl, as described before. Cells 

were harvested for further analysis after 48h. 

  

2.2.23 LUCIFERASE REPORTER ASSAY  

For the Luciferase Reporter Assays, 3x10
4
 iPSCs cells were seeded in each collagen-

coated well of a12-well plate in DM VEGF. 72h later, cells were transfected with the 

plasmid expressing Luciferase under the control of the PTEN 3’UTR (pGL3-control-

PTEN-3’UTR-wild type) and the miR-21 inhibitor and its control. As a control the 

same experiment was performed with a plasmid expressing luciferase under the 

control of a mutated and inactive PTEN 3’UTR. Briefly, 0.33μg/well of the reporter 

plasmids (AddGene, Joshua Mendell laboratory (O'Donnell, Wentzel et al. 2005)) 

were cotransfected with the miR-21 precursor and inhibitor and their negative 

controls, (5µM and 50µM respectively) using jetPRIME® (2μl/well) (Polyplus-

trasfection SA), according to the protocol provided. pGL3-Luc-Renilla (0.1μg/well) 

(AddGene) was also included in all transfections as a control of the transfection 

efficiency. Cells were lysated 48h later using Reporter lysis 5x buffer (Promega). 

The Luciferase (Luciferase Assay System, Promega) and Renilla (Coelenterazine, 
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Promega) enzymatic activities were detected 48h after transfection using the Lumat 

LB 9507 illuminometer. Relative luciferase unit was defined as the ratio of luciferase 

activity to Renilla activity and setting the control value to 1.0.  

 

 
 

Table 7 Map of the pGL3-Luciferase Basic vector. 

Backbone of pGL3; PTEN-3’UTR-wt and -mut have been inserted at the XBAl restriction side. 

 

 

 

2.2.24 ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA)  

Supernatant was collected from the cells, aliquoted and stored at-80
o
C until used. 

The concentration of the VEGF and TGF-β2 released glycoprotein in the supernatant 

was detected by a VEGF and TGF-β2 ELISA kit (Invitrogen and R&D respectively). 

For the TGF-β2 ELISA kit, before starting the assay, latent TGF-β2 had to be 

activated to the immunoreactive form according to the manufacturer’s protocol. A 

monoclonal antibody specific for TGF-β2 was pre-coated onto a 96-well microplate. 

100μl of Assay Diluent was added to each well. The microplate was subsequently 

coated with 100μl per well of the standards, control or activated sample and then 

sealed and incubated for 2h at room temperature (Standards comprised human 

recombinant TGF-β2 in 7 2-fold serial dilutions with 250pg/mL peak and were used 

for the generation of a standard curve). The solution was then removed and the wells 

were washed three times with Wash Buffer (0.05% Tween® 20 in PBS). Each well 

was then incubated with 200μl of TGF-β2 conjugated (polyclonal antibody against 

TGF-β2 conjugated to horseradish peroxidise) and the plate was sealed and 

maintained in room temperature for a further 2h. The wells were once again washed 
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three times with Wash Buffer. 200μl of the Substrate Solution were added per well 

(1:1 mixture of Color Reagent A (H2O2) and Color Reagent B 

(Tetramethylbenzidine)). The plate was incubated at room temperature for 25min 

avoiding direct exposure to light. Finally, the reaction was stopped using 50μl of 

Stop Solution (2N H2SO4). The optical density of each well was determined 

immediately using a Teecan microplate reader set to 450nm. Wavelength correction 

was set to 540nm and was used for normalisation of the readings. A standard curve 

was generated and the concentration of released TGF-β2 of each sample was 

calculated in pg/ml. 

Before starting the ELISA to detect VEGF secretion, cells were serum-deprived 

overnight. The supernatants were then harvested from an equal cell number (4x10
5
 

cells) and were 7.7-fold concentrated after centrifuging for 1h with centrifugal filter 

units (ultracel YM-3, Millipore). A purified antibody specific for VEGF was pre-

coated onto a 96-well microplate. The microplate was subsequently coated with 

100μl per well of the standards, standard diluent buffer to the blank standard wells or 

sample of concentrated supernatants and then sealed and incubated for 1h at room 

temperature (Standards comprised mouse recombinant VEGF in 7 2-fold serial 

dilutions with 250pg/mL peak and were used for the generation of a standard curve). 

The solution was then removed and the wells were washed three times with Wash 

Buffer (0.05% Tween® 20 in PBS). Each well was then incubated with 100μl of 

biotinylated mouse VEGF biotin conjugate solution into each well without the 

chromogen blank and the plate was sealed and maintained in room temperature for 

further 1h. The wells were once again washed three times with Wash Buffer. 100μl 

of streptavidin-HRP working solution (1X) were added per well without the 

chromogen blank. The plate was incubated at room temperature for 30min. After 

washing once again, the plate was incubated with 100μl of stabilized chromogen for 

25min at room temperature in the dark. Finally, the reaction was stopped using 100μl 

of Stop Solution (2N H2SO4) to each well. The optical density of each well was 

determined immediately using a Tecan microplate reader set to 450nm. Wavelength 

correction was set to 540nm and was used for normalisation of the readings. A 

standard curve was generated and the concentration of released VEGF of each 

sample was calculated in pg/ml. 
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2.2.25 PHARMACOLOGICAL INHIBITION OF SIGNALLING 

PATHWAYS 

To chemically inhibit PTEN iPSCs cells were seeded on Collagen IV, in DM 

containing VEGF 50ng/ml up to day 5 when the medium was removed and refreshed 

with serum free alpha MEM for 4h. Then it was replaced with fresh serum free alpha 

MEM containing 5µM PTEN inhibitor PTP bpV (phen) (Enzo Life Sciences) for 

24h, 2h and 30min, when the cells were harvested. DMSO was added to the cells for 

2h as a control. Protein expression of P-AKT, tot AKT and PTEN was analyzed.  

For SMAD3 inhibition iPSCs cells were cultured from day 1 in DM containing 5μM 

SMAD3 inhibitor SIS3 (Calbiochem) or DMSO as a control, in presence or absence 

of TGF-β2. At day seven the cells were harvested and EC marker epression was 

analyzed at protein and RNA level.  

In order to neutralize TGFβ-2 secretion, iPSCs were transfected with Pre-21 and Pre-

Ctrl as described before. 5h after transfection to the medium was added fresh alpha 

MEM containing FBS serum and either 1µg/ml TGFβ-2 neutralizing antibody 

antibody or IgG control (R&D System). 24h after transfection the media was 

refreshed with complete DM containing TGFβ-2 neutralizing antibody antibody or 

IgG control for further 24h. The gene expression of the EC markers was analyzed 

with Q-PCR.  

In order to neutralize VEGF secretion, iPSCs were seeded on collagen IV, in DM 

containing TGF-β2 for seven days. From day 1 the cells were treated with either 

0.1µg/ml VEGF neutralizing antibody or IgG as a control (R&D System). The 

protein expression of the EC markers was analyzed with Western Blot.  

 

2.2.26 STATISTICAL ANALYSIS OF DATA 

Statistical analysis of data was performed using ABI Graphpad Prism 5 software.  

Data were analyzed using a student’s unpaired T-test to compare two data sets for 

statistical differences and 1way ANOVA for multiple comparisons. A value of 

p<0.05 was considered significant. 
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Table 8 Buffers and their composition 

Buffer Composition 

5X SDS Loading 

Buffer 

10% sodium dodecyl sulphate, 50% glycerol, 0.05% 

bromophenol blue, 

10mM β-mercaptoethanol in 500mM Tris-

hydrochloride (pH 6.8) 

6x DNA Loading 

Buffer 

30% glycerol, 0.3% bromophenol blue in distilled water 

Phosphate Buffered 

Saline 

137 mM NaCl, 2.7mM KCl, 8.1mM Na2HPO4 • 2 H2O, 

1.76mM 

KH2PO4 to pH 7.4 

Protein Lysis Buffer 1mM EDTA, 50mM tris-hydochloride (pH7.4), 150mM 

NaCl, 1% Triton 

X, cocktail of protease inhibitors (Roche;1 tablet in 

50ml) 

Transfer Buffer 25mM Tris, 192mM glycine, 10% methanol in ddH2O. 
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CHAPTER 3. RESULTS 
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3.1 ROLE OF VEGF AND SHEAR STRESS IN 

STEM CELL DIFFERENTIATION INTO ECs 

Previous work from our laboratory identified a protocol for ESC differentiation 

towards ECs involving the use of collagen IV, VEGF and shear stress (Zeng, Xiao et 

al. 2006). In order to adapt this protocol to the differentiation of mouse iPSCs, 

several protocols involving different VEGF concentrations, and time points were 

tested. A protocol combining VEGF and shear stress was also tested, firstly on ESCs 

and then on iPSCs. 

 

3.1.1 VEGF induces functional differentiation of iPSC towards EC 

lineage 

Firstly, in order to identify the optimal concentration of VEGF able to induce the 

strongest level of endothelial cell differentiation in iPSCs, cells were cultured in 

differentiation medium (DM) containing 0, 10, 20, 50 and 100ng/ml of VEGF for 5 

days. Quantitative gene expression analysis showed a consistent upregulation of the 

endothelial markers VE-cadherin, Flk1 and vWF, in particular when the cells were 

stimulated with 20 and 50ng/ml of VEGF, as compared to untreated cells cultured in 

differentiation (Figure 18). 

 

 

Figure 18 Dose-dependent response of iPSCs to VEGF 

iPSCs were differentiated for 5 days on collagen IV and in the presence of differentiation medium 

containing different concentrations of VEGF (0, 10, 20, 50 and 100 ng/ml). Gene expression level 

was assessed by real-time PCR for the endothelial markers VE-cadherin (VE-cad, A), Flk1 (B), and 
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vWF (C). Statistical analysis performed is 1-way ANOVA for multiple comparisons. Data are shown 

as mean ±SEM and are representative of 4 individual experiments. *P < 0.05, **P < 0.01 and ***P < 

0.001 vs. 0ng/ml. Controls (0ng/ml) represent iPSCs cultured in differentiation medium containing 

0ng/mL of VEGF. 

 

On the basis of results obtained from the VEGF concentration curve, the next series 

of experiments were designed to elucidate the timing of the progression towards 

endothelial differentiation. The concentrations of 20 and 50ng/ml of VEGF were 

chosen because they induced the greatest upregulation of endothelial marker 

expression. The effects of these two conditions were tested after 3, 5 and 7 days of 

stimulation.  

Cells cultured in the presence of 20ng/ml of VEGF showed an increase in 

endothelial marker expression starting at day 5. Strong and significant upregulation 

of VE-cadherin, Flk1 and vWF was observed at day 7 (Figure 19). 

 

Figure 19 Time course study of EC markers expression in iPSCs differentiated with 20ng/ml 

VEGF 

iPSCs were seeded on collagen IV and cultured in differentiation medium with 20ng/ml VEGF. Gene 

expression analysis was performed by real-time PCR after 3, 5, and 7 days of differentiation. Results 

are shown for VE-cadherin (VE-cad, A), Flk1 (B) and vWF (C). The statistical analysis used is 1-way 

ANOVA for multiple comparisons. Data are shown as mean ±SEM and are representative of 4 

individual experiments. *P < 0.05 and **P < 0.01 vs. d0 (d0 represents iPSCs seeded on gelatin and 

cultured in undifferentiated conditions). 

 

Since the concentration curve analysis showed that the addition of 50ng/ml of VEGF 

was able to induce a stronger endothelial differentiation than 20ng/ml, we tested the 

progression of differentiation over a 7 days period adding 50ng/ml of VEGF to the 

medium. Results showed a strong upregulation of the endothelial marker expression 
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at day 7 (Figure 20). As compared to the results obtained with 20ng/ml of VEGF, the 

higher dose of the growth factor induced a stronger expression of some 

differentiation markers, in particular VE-cadherin and an earlier upregulation of the 

mature endothelial cell marker vWF, starting from day 3. 

 

 

Figure 20 Time course study of EC marker expression in iPSCs differentiated with 50ng/ml 

VEGF 

iPSCs were cultured on collagen IV and in differentiation medium supplemented with 50ng/ml 

VEGF. Real-time PCR was performed after 3, 5, and 7 days of differentiation to analyze the gene 

expression of VE-cadherin (Ve-cad, A), Flk1 (B) and vWF (C). The statistical analysis used is 1way 

ANOVA for multiple comparisons Data are shown as mean ±SEM and are representative of 4 

individual experiments. **P < 0.01 and ***P < 0.001 vs. d0 (d0 represents iPSCs seeded on gelatin 

and cultured in undifferentiated conditions). 

 

 

To confirm the expression of the differentiation markers, Western blot analysis was 

performed on cell lysate derived from iPSCs differentiated at different time points. 

Protein analysis confirmed the differentiation pattern observed at gene expression 

level. In particular, cells showed an increased level of the endothelial cell markers 

CD31 and Flk1 starting at day 3, further increasing at day 5 and day 7. A similar 

pattern was observed for the late endothelial cell marker VE-cadherin, which was 

upregulated from day 5 (Figure 21). 
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Figure 21 EC marker protein expression in iPSCs differentiated with 50ng/ml VEGF at 

different time points 

iPSCs were seeded on collagen IV, in differentiation medium containing 50ng/ml VEGF and the 

samples were harvested after 3, 5 and 7 days of differentiation. Protein expression level was assessed 

by Western Blot analysis of early endothelial markers CD31 (A) and Flk1 (B), and the late marker 

VE-cadherin (VE-cad, C). As a control iPSCs were seeded on gelatin and cultured in undifferentiating 

conditions. GAPDH (D) was used as loading control. 

 

We also observed a different morphology of the cells cultured on collagen IV, in DM 

containing VEGF 50ng/ml, as compared to the undifferentiated cells in gelatin. 

While the undifferentiated iPSCs appeared clustered in round three-dimensional 

colonies, the differentiated cells assumed a flat adherent phenotype, becoming 

increasingly elongated (Figure 22). 
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Figure 22 Morpholgy of iPSC-derived ECs and undifferentiated iPSCs 

iPSCs were differentiated for 5 days on collagen IV and cultured in differentiation medium containing 

50ng/ml VEGF (B) or cultured in undifferentiated conditions on gelatin (A). Light microscopy 

images were taken with the Nikon Eclipse TS100 and are representative of at least 3 experiments. 

Scale bar, 25 μm. 

Furthermore, immunofluorescence analysis of the endothelial cell markers VE-

cadherin, eNOS and vWF was performed to confirm expression and assess the 

correct localization of the proteins in the cells. Cells were seeded on collagen in the 

presence of 50ng/ml of VEGF for 5 days. Confocal imaging showed a clear 

expression pattern of VE-cadherin at cell junction level, and of eNOS and vWF on 

the cytoplasm/membrane of the cells (Figure 23). 
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Figure 23 Staining of iPSC-derived ECs treated with 50ng/ml VEGF 

iPSCs were differentiated on collagen IV and in differentiation medium containing 50ng/ml VEGF 

for 5 days. Leica SP5 inverted Confocal microscope images showed positivity for the endothelial cell 

markers VE-cadherin (VE-cad, A) and eNOS (B), and vWF (C). Negative controls consisted of cells 

incubated with IgG followed by secondary antibody (D). Scale bar, 50 μm. 

In addition, expression of VE-cadherin after 7 days was confirmed by 

immunocytochemistry. Cells cultured for 7 days on collagen IV in DM containing 

50ng/ml VEGF, showed a clear pattern of VE-cadherin expression at the cell-cell 

junctions (Figure 24). Comparison with the results of the previous experiment 

(performed after five days with 50ng/ml VEGF) demonstrated that an increased 

culture time led to a stronger VE-cadherin positivity. 
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Figure 24 Staining of iPSC-derived ECs treated with 50ng/ml VEGF 

iPSCs were differentiated for 7 days on collagen IV and cultured in differentiation medium containing 

50ng/ml VEGF. Leica SP5 inverted confocal imaging showed a strong positivity of the cells for the 

endothelial cell marker VE-cadherin (VE-cad, A). Negative controls consisted of cells incubated with 

IgG followed by secondary antibody (Neg C, B). Scale bar, 50 μm.  

Finally, to test the functionality of iPSCs after VEGF treatment we performed an in 

vitro angiogenesis assay. Cells treated for 7 days with VEGF (Figure 25, B) showed 

an increased tube formation ability, as compared to the cells grown in absence of 

VEGF (Figure 25, A). The results of the assay were confirmed by total tube length 

quantification, which showed a 4-fold increase in tube-like structure formation 

capacity in cells differentiated with VEGF (Figure 25, C). These findings showed 

that the endothelial lineage differentiation of iPSCs has given rise to functional, 

mature endothelial cells. 
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Figure 25 In vitro angiogenesis assay in iPSCs differentiated with VEGF 

iPSCs were seeded on collagen IV and cultured in differentiation medium (DM) with or without 

VEGF. After 7 days, cells were seeded on Matrigel and incubated for 7-8h to test their angiogenesis 

potential. Representative images show tube formation in the cells treated with VEGF (B) and 

untreated in DM (A). Total tube length was measured to quantify the effect of differentiation on tube-

like formation capacity (C). The statistical analysis used is Student’s unpaired T-test. Data are shown 

as mean ±SEM and are representative of 3 individual experiments. ***P < 0.01 vs. DM (DM 

represents iPSCs seeded on collagen IV and cultured in differentiation medium). Scale bars, 25 μm. 
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3.1.2 Role of shear stress in stem cell differentiation 

Previous studies conducted in our group revealed the importance of shear stress in 

the differentiation of stem and progenitor cells. In particular, application of shear 

stress on Sca1
+
 progenitor cells increased their proliferation and induced EC marker 

upregulation and this effect is mediated by the VEGF pathway (Xiao, Zeng et al. 

2006). 

In order to further improve the differentiation protocol described in the first part of 

the work, we included a set of experiments performed on ESCs and then replicated 

with iPSCs, combining VEGF and shear stress. In particular, we chose to study a 

ckit
+
 population that is being characterized in our laboratory and has been 

demonstrated to represent a novel vascular progenitor cell population. 

ESCs were seeded on collagen IV and cultured in differentiation medium for 4 days. 

Subsequently, ckit
+
 progenitor cells were isolated using immunomagnetic beads and 

seeded on collagen IV coated wells in the presence of differentiation medium. After 

three days of culture, shear stress was applied for either 24h or 48h and then cells 

were collected and analyzed for their expression of endothelial markers. Quantitative 

gene expression analysis on cells subjected to 24h of shear stress showed some 

degree of upregulation of the endothelial markers CD31 and VE-cadherin, although 

consistent results were obtained only for CD31 after 24h. Flk1 and eNOS were 

upregulated approximately 2-fold, as compared to cells cultured in static conditions. 

Treatment of the cells with shear stress for 48h did not induce a relevant increase in 

their differentiation (Figure 26).  



124 

 

 

Figure 26 Effect of shear stress on ESC differentiation 

ckit
+
 progenitor cells isolated from mESCs pre-differentiated for 4 days on collagen IV and in 

differentiation medium,  were cultured in the same differentiation conditions for a further three days 

and subjected to shear stress for 24h and 48h. Real time PCR shows the effect on endothelial cell 

marker expression of the addition of shear stress (SS) to the static differentiation conditions (st). 

Results are shown for VE-cadherin (VE-cad, A), CD31 (B), Flk1 (C) and eNOS (D). The statistical 

analysis used is 1way ANOVA for multiple comparisons. Data are presented as mean ±SEM of 3 

individual experiments.*P < 0.05 vs. iPSCs differentiated for 24h in static conditions. The shear stress 

results were normalized to the relative time points. 

 

3.1.3 Synergistic action of shear stress and VEGF in ESC 

differentiation into ECs  

Previous results in this chapter showed that shear stress is able to induce some 

upregulation of the endothelial cell markers in mESC. Therefore, in order to increase 

the response we decided to combine the mechanical force of shear stress to the 

biochemical action of VEGF. 

ESC-derived ckit
+
 progenitor cells were obtained as described previously 

(Campagnolo et al., submitted to Circulation) and differentiated for three days in 
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collagen IV before stimulation with 50ng/ml VEGF for 24 and 48h, with or without 

the application of shear stress. Quantitative gene expression analysis of the 

endothelial markers CD31, Flk1 and eNOS showed upregulation of approximately 2 

fold in the cells treated for 24h with a combination of shear stress and VEGF, 

relative to the cells treated with VEGF alone. eNOS and the late EC marker VE-

cadherin showed an increase of 2 and 2.5 fold respectively after 48h of combined 

treatment with VEGF and shear stress, compared to static cells (Figure 27).  

 

 

Figure 27 Combined application of shear stress and VEGF improves EC differentiation of ckit+ 

cells 

ckit
+
 progenitor cells were differentiated for a further three days in DM on collagen and then 

stimulated with VEGF 50ng/ml for 24h and 48h, in presence or absence of shear stress stimulation. 

Real time PCR shows the synergistic effect on the endothelial marker expression of the combination 

of shear stress (SS) and VEGF (V). Results are reported for VE-cadherin (VE-cad, A), CD31 (B), 

Flk1 (C) and eNOS (D). The statistical analysis used is 1way ANOVA for multiple comparisons. Data 

are shown as mean ±SEM and are representative of 3 individual experiments. *P < 0.05 vs. iPSCs 

cultured in VEGF only (V). Results of shear stress and VEGF combined treatment were normalized to 

the relative time points. 
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As in ckit
+
 cells the combined action of shear stress and VEGF was shown to induce 

the expression of EC markers to a greater level, as compared to each stimulus 

applied alone, the logical next step was application of this protocol to iPSCs. 

 

3.1.4 Synergistic action of shear stress and VEGF in iPSC 

differentiation into ECs 

Once we had established the protocol in ESC-derived ckit
+
 progenitors, we 

proceeded to apply it to iPSCs. 

We used a mixed population of iPSCs and pre-differentiated them for three days. 

These cells were then treated with shear stress, VEGF or a combination of the two 

for 48h. After combined application of VEGF and shear stress, results showed a 

significant and stronger EC marker expression, as compared to each stimulus applied 

alone (Figure 28). 

 

Figure 28 Combined application of shear stress and VEGF improves EC differentiation in 

iPSCs 

iPSCs were differentiated for three days on collagen IV and in differentiation medium and then 

treated with shear stress, VEGF or a combination of the two stimuli for 48h. Real time PCR shows a 

synergistic effect on endothelial marker expression after addition of shear stress (SS) and VEGF (V) 

to the differentiation conditions, as compared to either stimulus alone. Results are shown for VE-

cadherin (VE-cad, A), Flk1 (B) and vWF (C). The statistical analysis used is 1way ANOVA for 

multiple comparisons. Data are presented as mean ±SEM of 3 individual experiments.*P < 0.05 vs. 

iPSC differentiated in presence of VEGF (V). 
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3.1.5 Conclusions  

In conclusion, in this first part of the work we described the optimization of the 

differentiation protocols for ESCs and iPSCs.  

Firstly, we tested several conditions and established that a greater level of 

endothelial differentiation could be obtained by culturing iPSCs with differentiation 

medium containing 50ng/ml VEGF for up to 7 days, as shown by EC marker 

expression results and in vitro angiogenesis assay. 

Additionally, using ESCs as a model, we further optimized the previous protocol 

through the addition of shear stress. 

We finally applied the combination of shear stress, a mechanical force, and VEGF, a 

chemical stimulation, to iPSCs. VEGF and shear stress together were able to increase 

the EC differentiation of the cells, as compared to each stimulus applied alone. 

However, a limitation of this protocol is represented by the poor reproducibility of 

the experiments performed in presence of shear stress, which will be explained in 

greater depth in the discussion. 
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3.2 CHARACTERIZATION OF miRNA PROFILE 

DURING VEGF- AND SHEAR STRESS- INDUCED 

iPSC DIFFERENTIATION: MiRNA-21 

REGULATES VEGF-INDUCED iPSC 

DIFFERENTIATION INTO ECs 

 

The optimization of the protocol described in the previous section (3.1) led to the 

design of a method to differentiate iPSCs into ECs, involving the use of DM with 

50ng/ml of VEGF or a combination of VEGF and shear stress treatment. Using these 

protocols we now aimed to characterize the miRNA signature of the differentiating 

iPSCs in order to study the involvement of miRNAs in the relevant signalling 

pathways and to elucidate the underlying molecular mechanism. 

 

3.2.1 MiRNA array analysis on iPSCs differentiated with VEGF and 

undifferentiated  

Our results showed that the treatment of iPSCs with 50ng/ml of VEGF induced 

endothelial differentiation, starting at day 5, with a peak at day 7. Minor changes in 

marker expression were detected also at day 3, but were not consistent in all the 

markers. 

Using the protocol described in Chapter 3 we then aimed to study the molecular 

mechanisms underlying iPSC differentiation.  

For this purpose, we performed a miRNA array to study the miRNA involvement in 

the differentiation process. The array was performed in order to compare the 

expression of miRNAs in iPSCs undifferentiated and differentiated for three days in 

the presence of 50ng/ml VEGF. 

The choice of such an early time point was made in order to investigate the initial 

changes in miRNA expression that might initiate the subsequent differentiation 

cascade. 
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Each experiment was performed in quadruplicates, and 2 controls (undifferentiated 

iPSCs) and 2 treated samples (3 days VEGF 50ng/ml) were loaded on two 

microfluidic cards each (pool A and B). 

The two microfluidic cards used in the experiment contained probes for 750 target 

miRNAs. Card A focuses on more highly characterized miRNAs, while Card B 

contains many of the more recently discovered miRNAs along with the miR* 

sequences or passenger strands. Indeed, before assembling the active RNA induced 

silencing complex (RISC) to perform gene silencing, the double-stranded duplex is 

separated into the guide strand, functional and complementary to the mRNA target, 

and the passenger strand, which is subsequently degraded (Narazaki, Uosaki et al. 

2008). The function of these passenger strands is still unclear, but well-conserved 

miRNA* strands may contribute to the regulation network (Park, Afrikanova et al. 

2004). 

Data obtained from the miRNA array were normalized to 3 different control 

miRNAs, differential expression was then considered for those miRNAs that 

obtained similar results in all three normalizations. Out of the 750 probes present in 

the cards, 123 in pool A and 88 in  pool B reported expression of the relative miRNA 

in our system and therefore could be detected under the threshold of 30 cycles. 

Amongst the detected miRNAs, differential expression was observed in 25 (pool A) 

and 15 (pool B) miRNAs; only miRNAs consistently up or down regulated in both 

the experiments analyzed were considered. Finally, miRNAs which showed a 

consistent differential expression of at least 2 fold were picked. The final number of 

miRNAs selected was 24 for pool A (20 upregulated and 4 downregulated, Table 9) 

and 11 for pool B (8 upregulated and 3 downregulated, Table 10). 

Some of the miRNAs identified in the array analysis are already known to be 

involved in stem cells maintenance, such as the miRNA-302-367 cluster (Taniyama 

and Griendling 2003), angiogenesis, such as the miRNA-20b and 21 (Cascio, 

D'Andrea et al. 2010, Sabatel, Malvaux et al. 2011), and smooth muscle cell 

differentiation, like the miRNA-145 (Willert, Brown et al. 2003).  
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Target name snoRNA202 snoRNA135 MammU6 

mmu-let-7c  6.7 ± 3.4  4.9  ± 3.2  6.8 ± 1.9  

mmu-miR-129-3p  33.9 ± 15  22.6 ± 6.2  39.1 ± 25.9  

mmu-miR-133a  7.2 ± 4.4   5.3 ± 3.9  7.2 ± 2.8  

mmu-miR-139-5p  3.6 ± 2.5  2.3 ± 1.3   4.2 ± 3.7  

mmu-miR-188-5p  3.3 ± 0.5  2.3 ± 0.7  3.5 ± 0.4  

mmu-miR-20b  3.1 ± 1.6  2.1 ± 0.7  3.6 ± 2.6  

mmu-miR-21  22.7 ± 27.3  17.5 ± 21.8  21.0 ± 23.4  

mmu-miR-218  2.9 ± 0.5  2.1 ± 0.7  3.1 ± 0.3  

mmu-miR-224  126.5 ± 170.7  98.5 ± 134.3  114.3 ± 151.0  

mmu-miR-26b  23.0 ± 13.1  15.1 ± 6.3  26.9 ± 20.7  

mmu-miR-29b  145.9 ± 189.9  113.2 ± 150.1  132.7 ± 166.7  

mmu-miR-302a  88.1 ± 3.6  61.5 ± 13.4  95.7 ± 20.7  

mmu-miR-302b  4432 ± 4226 2820 ± 2391 5436 ± 5862 

mmu-miR-302c  27395 ± 34072 21156 ± 27080 25158 ± 29548 

mmu-miR-340-5p  7.8 ± 2.0   5.6 ± 2.4  8.3 ± 0.0  

mmu-miR-34b-3p  6.6 ± 1.1   4.7 ± 1.1   7.1 ± 0.6  

mmu-miR-367  65.9 ± 16.9  44.8 ± 3.6   74.4 ± 37.0  

mmu-miR-449a  19.8 ± 12.9  14.5 ± 11.4   19.8 ± 8.6  

mmu-miR-685  2.9 ± 0.2  2.0 ± 0.2  3.2 ± 1.1  

rno-miR-224  9.3 ± 5.1  6.1 ± 2.4  10.8 ± 8.2  

mmu-miR-145  0.3 ± 0.1  0.2 ± 0.1  0.3 ± 0.1  

mmu-miR-467e  0.5 ± 0.3  0.4 ± 0.3  0.5 ± 0.2  

mmu-miR-669a  0.5 ± 0.2  0.3 ± 0.2  0.5 ± 0.1  

mmu-miR-409-3p  0.3 ± 0.4  0.3 ± 0.3  0.3 ± 0.3  

 

Table 9 Pool A miRNAs target. The miRNA array for pool A was performed on iPSCs 

differentiated for three days on collagen IV and in differentiation medium containing 50ng/ml of 

VEGF; undifferentiated cells were used as control. The results represent an average of the differential 

expression between two independent experiments. In the table are shown 20 (green panel) and 4 (red 

panel) miRNAs, respectively up and down regulated at least two fold relative to the undifferentiated 

iPSCs. Results were obtained after normalization with three different endogenous controls (mouse 

snoRNA202 and 135, and mammalian MammU6). These miRNAs were initially characterized in 

mouse or rat (mmu= mus musculus; rno= rattus norvegicus). 
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Target name snoRNA135 snoRNA202 Mamm U6 

hsa-miR-200b 2.0 ± 0.6  2.0 ± 0.3  2.5 ± 0.6  

mmu-miR-212 4.4 ± 1.0  4.3 ± 0.5  5.6 ± 1.6  

mmu-miR-2138       6.5 ± 4.5  6.2 ± 3.8   7.1 ± 1.8  

mmu-miR-302a# 108.1 ± 46.1  104.7 ± 34.8  129.4 ± 9.8  

mmu-miR-34c# 7.0 ± 2.5   6.8 ± 1.7  8.5 ± 1.3  

mmu-miR-374-5p 8.9 ± 7.1  8.4 ± 6.1  9.5 ± 3.6  

mmu-miR-449b 370.8 ± 512.4  341.1 ± 469.7  326.7 ± 440.3  

mmu-miR-92a# 4.1 ± 2.1  3.9 ± 1.7  4.7 ± 0.1  

mmu-miR-467a 0.3 ± 0.1  0.3 ± 0.1  0.4 ± 0.0  

mmu-miR-690 0.4 ± 0.1  0.3 ± 0.1  0.4 ± 0.0  

mmu-miR-706 0.4 ± 0.2  0.4 ± 0.2  0.4 ± 0.0  

Table 10 Pool B miRNAs target. miRNA array for pool B on iPSCs undifferentiated used as control, 

and differentiated for three days on collagen IV and in differentiation medium containing 50ng/ml of 

VEGF. The results represent an average of the differential expression between two independent 

experiments. In the table are shown 8 (green panel) and 3 (red panel) miRNAs, respectively up and 

down regulated at least two times relative to the control. MiR-302a#, 34c# and 92a# represent miR* 

passenger strands. Results were normalized with three different endogenous controls (mouse 

snoRNA202 and 135, and mammalian MammU6). These miRNAs were initially characterized in 

human or mouse (hsa= homo sapiens; mmu= mus musculus). 

 

3.2.2 Real time PCR validation of selected miRNAs 

In order to choose some relevant candidates and to study their involvement in the 

mechanisms of iPSC differentiation toward an endothelial lineage, we decided to 

validate some of the most consistently upregulated or downregulated miRNAs in the 

array and some of those previously shown to contribute to angiogenesis.  

We chose to analyze the expression of five of the selected miRNAs in the cells 

treated with VEGF, compared to the untreated cells (Figure 29).  
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Figure 29 Analysis of the expression of selected miRNAs in iPSCs differentiated with 50ng/ml 

VEGF for up to 7 days 

Five of the most consistently upregulated miRNAs were selected from the miRNA array and validated 

by real time PCR. Results show the expression levels of miRNAs 21 (A), 218 (B), miRNA 20b (C), 

133a (D) and 29b (E) after 3, 5 and 7 days of VEGF treatment, as compared to the undifferentiated 

cells. The statistical analysis used is 1way ANOVA for multiple comparisons. Data are presented as 

mean ±SEM of 4 individual experiments.*P < 0.05 and **P < 0.01 vs. d0 (d0 represents iPSCs 

seeded on gelatin and cultured in undifferentiated conditions). 

 

3.2.3 MiRNA array analysis on iPSCs treated with shear stress for 

48h and static 

 

In section 3.1 we described a differentiation protocol for ESCs and iPSCs involving 

the application of shear stress and VEGF. In order to investigate possible common 

mechanisms in the iPSC differentiation process induced by the two stimuli, we 

aimed to investigate the miRNA signature of the cells treated with shear stress and 

untreated. For this purpose we performed a second miRNA array to compare the 

miRNA expression in iPSCs differentiated for three days on collagen IV, in DM and 

iPSCs differentiated in the same conditions and with 48h of shear stress treatment.  
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Each experiment was performed in quadruplicates, and 2 controls (3 days collagen 

IV and DM) and 2 treated samples (3 days collagen IV and DM, 48h of shear stress) 

were loaded on two microfluidic cards each (pool A and B).  

As explained before, data obtained from the miRNA array were normalized to 3 

different control miRNAs, differential expression was then considered for those 

miRNAs that obtained similar results in all three normalizations. Out of the 750 

probes present in the cards, 138 in pool A and 94 in pool B reported expression of 

the relative miRNA in our system and therefore could be detected under the 

threshold of 30 cycles. Only differentially expressed miRNAs consistently up or 

down regulated of at least 2 fold in both the experiments analyzed were considered. 

The final number of miRNAs selected was 6 for pool A (4 upregulated and 2 

downregulated, Table 11) and 8 for pool B (3 upregulated and 5 downregulated, 

Table 12). 

 

Target name snoRNA202 snoRNA135 MammU6 

mmu-miR-218 1.9 ± 0.0  4.1 ± 4.2  2.3 ± 0.6  

mmu-miR-369-5p 37.8 ± 49.1  42.0 ± 43.2  39.2 ± 49.1  

mmu-miR-425 2.4 ± 0.3  5.6 ± 6.0  3.0 ± 1.1  

mmu-let-7e 14.6 ± 8.9  21.6 ± 13.1  16.6 ± 6.6  

mmu-miR-328 0.2 ± 0.0  0.3 ± 0.3  0.2 ± 0.0  

mmu-miR-302b 0.4 ± 0.0  0.7 ± 0.7  0.4 ± 0.1  

Table 11 Pool A miRNAs target. The miRNA array for pool A was performed on iPSCs 

differentiated for three days on collagen VI and in differentiation medium (DM), under shear stress 

stimuli for 48h. Differentiated cells on collagen IV and in DM were used as controls. The results 

represent an average of the differential expression between two independent experiments. In the table 

are shown 4 (green panel) and 2 (red panel) miRNAs, respectively up and down regulated at least two 

fold relative to the untreated iPSCs.  Results were obtained after normalization with three different 

endogenous controls (mouse snoRNA202 and 135, and mammalian MammU6). These miRNAs were 

initially characterized in mouse or rat (mmu= mus musculus; rno= rattus norvegicus). 
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Target name snoRNA202 snoRNA135 MammU6 

hsa-miR-200b 1.2 ± 0.0  1.5 ± 0.2  1.6 ± 0.4  

mmu-miR-31# 6.1 ± 2.9  7.2 ± 2.7  0.9 ± 0.3  

rno-miR-7a# 128.4 ± 36.4  152.6 ± 28.5  0.8 ± 0.2  

Y1  0.3 ± 0.1   0.4 ± 0.1  0.4 ± 0.0  

hsa-miR-15b# 0.5 ± 0.2   0.6 ± 0.3  0.6 ± 0.1  

hsa-miR-378  0.2 ± 0.1  0.2 ± 0.1  0.2 ± 0.2  

hsa-miR-99b# 0.4 ± 0.2  0.4 ± 0.2  0.5 ± 0.4  

mmu-miR-721  0.4 ± 0.1  0.5 ± 0.1  4.6 ± 3  

Table 12 Pool B miRNAs target. MiRNA array for pool B on iPSCs differentiated for three days on 

collagen IV and in differentiation medium (DM), under shear stress stimuli for 48h. Differentiated 

cells on collagen IV and in DM were used as controls. The results represent an average of the 

differential expression between two independent experiments. In the table are shown 3 (green panel) 

and 5 (red panel) miRNAs, respectively up and down regulated at least two times relative to the 

untreated control iPSCs. MiR-31#, 7a#, 15b# and 99b# represent miR* passenger strands. Results 

were normalized to three different endogenous controls (mouse snoRNA202 and 135, and mammalian 

MammU6). These miRNAs were initially characterized in human or mouse (hsa= homo sapiens; 

mmu= mus musculus). 

 

3.2.4 Analysis of differential expression of selected miRNAs in iPSCs 

treated with shear stress for 48h and untreated 

We then aimed to validate observed changes to some of the most consistently 

upregulated and downregulated miRNAs from the array performed in cells after 

shear stress treatment, in order to study their involvement in the mechanisms of iPSC 

differentiation toward an endothelial lineage. We analyzed the differential expression 

of six selected miRNAs in the cells treated with shear stress for 48h, compared to the 

untreated cells on collagen IV and DM.  

On analysis of the results of the Real time PCR we were unable to confirm any 

significant differential expression of the selected miRNAs in the cells treated with 

shear stress, compared to the static (Figure 30).  
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Figure 30 Analysis of the expression of miRNAs selected from the miRNA array performed in 

iPSCs treated with shear stress and static 

Four of the most consistently upregulated miRNAs, miR-218 (A), miR-425 5p (D), miR-LET 7E (E) 

and miR-302B (F), and two of the most consistently downregulated miRNAs, miR-378 (B) and miR-

202B (C), were selected from the array and validation experiments performed by real time PCR. 

Expression levels of these markers are shown in the static cells differentiated for 3 days on collagen 

IV, in differentiation medium (DM) and in cells differentiated in the same conditions plus 48h of 

shear stress treatment (DM SS). The statistical analysis used is 1way ANOVA for multiple 

comparisons. Data are presented as mean ±SEM of 4 individual experiments. No results were 

significant (*P < 0.05). 

 

A possible reason for these results is that, as mentioned in section 3.1, the 

experiments performed in the presence of shear stress showed a lot of variability, 

which does not allow the establishment of an efficient differentiation system. 

Explanation of this observed variability will be further explored in the discussion.  

 

 

3.2.5 Study of the role of miRNAs in endothelial differentiation 

Based on the data shown above, we decided to select one of the most suitable 

candidates amongst the validated miRNAs to investigate its role in iPSC 

differentiation towards an EC lineage. We decided to focus on miR-20b and 

miRNA-21, since their involvement in angiogenesis has already been documented. 
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3.2.5.1 MiR-20b expression does not affect iPSC endothelial differentiation 

MiR-20b is considered one of the potential anti-angiogenic miRNAs, through 

targeting VEGF expression (Wang and Olson 2009); miR-20b  has also been shown 

to be downregulated in hypoxic conditions and to directly decrease VEGF 

expression in carcinoma cell lines (Hua, Lv et al. 2006). Therefore, miR-20b appears 

to play a role in regulating angiogenesis, but its function in EC differentiation has 

not yet been clarified.  

Aiming to investigate a potential involvement of miR-20b in the VEGF-induced 

iPSC differentiation towards ECs, we first altered the levels of this miRNA in iPSCs 

differentiated with VEGF for three days. In order to do so, we overexpressed miR-

20b by transfecting iPSCs with the miR-20b precursor (Pre-20b). The mature 

miRNA expression was increased by approximately 300-fold in iPSCs transfected 

with Pre-20b, as compared to cells transfected with the precursor control (Pre-Ctrl) 

(Figure 4.3, A). We then inhibited miR-20b expression by transfecting iPSCs with an 

anti-miR LNA-20b, which is a chemically modified, single stranded nucleic acid 

designed to specifically bind to and inhibit endogenous miR-20b molecules. Results 

showed an approximately 13-fold decrease in the mature expression level of miR-

20b in iPSCs transfected with LNA-20b, as compared to cells transfected with the 

inhibitor negative control (LNA-Ctrl) (Figure 31, B). 
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Figure 31 MiR-20b overexpression and inhibition in iPSCs differentiated with VEGF 

iPSCs were differentiated for three days on collagen IV and in differentiation medium containing  

50ng/ml VEGF. The levels of miR-20b were altered by transfecting the cells with precursor of miR-

20b (Pre-20b), negative control precursor (Pre-Ctrl), inhibitor of miR-20b (LNA-20b) and negative 

control of miRNA inhibitor (LNA-Ctrl). Real time PCR analysis was performed after 48h to assess 

the expression level of the mature miR-20b. Results are shown for miR-20b expression after 

transfection with Pre-20b compared to Pre-Ctrl (A) and with LNA-20b, compared to LNA-Ctrl (B). 

The statistical analysis used is Student’s unpaired T-test. Data are shown as mean ±SEM of 3 

individual experiments. ***P < 0.001 vs. Pre-Ctrl and LNA-Ctrl. 

 

Next, we aimed to analyze the effect of miR-20b on the expression of the EC 

markers VE-cadherin and Flk1 in iPSCs differentiated in presence of VEGF. 

However, Q-PCR results showed that miR-20b overexpression (Figure 32 A and C) 

and inhibition (Figure 32, B and D) did not affect the expression levels of these 

genes. 
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Figure 32 Analysis of EC marker expression in iPSCs differentiated with VEGF, after miR-20b 

overexpression and inhibition 

iPSCs differentiated for 3 days on collagen IV and in differentiation medium containing VEGF were 

transfected with miR-20b precursor (Pre-20b), inhibitor (LNA-20b) and the negative controls of the 

miR-20b precursor (Pre-Ctrl) and inhibitor (LNA-Ctrl). Real time PCR analysis was performed 48h 

later. Results are shown for the EC markers VE-cadherin (VE-cad) (A and B) and Flk1 (C and D), 

after miR-20b overexpression and inhibition. The statistical analysis used is Student’s unpaired T-test. 

Data are presented as mean ±SEM of 3 individual experiments. No results were significant (*P < 

0.05). 

From the above shown results, we can indeed conclude that miR-20b does not 

regulate iPSC differentiation into ECs. 

 

3.2.5.2 MiR-21 specifically regulates iPSC differentiation into ECs 

MiR-21 has previously been shown to induce tumour angiogenesis through AKT and 

ERK pathway activation, increasing the expression of VEGF and HIF-1α (Liu, Li et 

al. 2011). However, the role of miR-21 in regulating endothelial differentiation 

remains to be elucidated. Therefore we decided to investigate its involvement in the 

VEGF-induced iPSC differentiation into ECs by altering the levels of miR-21 in 

iPSCs differentiated in the presence of VEGF for three days. 
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Firstly we overexpressed miR-21 by transfecting with the miR-21 precursor (Pre-

21). The level of miR-21 was increased by approximately 80 fold in the presence of 

the Pre-21, as compared to cells transfected with the precursor control (Pre-Ctrl) 

(Figure 33, A). We then inhibited miR-21 expression by transfecting iPSCs with an 

anti-miR LNA-21, which is a chemically modified, single stranded nucleic acid 

designed to specifically bind to and inhibit endogenous miR-21 molecules. Results 

showed an approximately 34-fold decrease in the mature miRNA expression after 

LNA-21 transfection, as compared to the cell transfected with the inhibitor negative 

control (LNA-Ctrl) (Figure 33, B). 

 

Figure 33 MiR-21 overexpression and inhibition in iPSCs differentiated with VEGF 

iPSCs were differentiated for three days on collagen IV and in differentiation medium containing  

50ng/ml VEGF. In order to alter the levels of miR-21, cells were transfected with precursor (Pre-21), 

negative control precursor (Pre-Ctrl), inhibitor of miR-21(LNA-21) and negative control of miRNA 

inhibitor (LNA-Ctrl). After 48h gene expression was assessed by Real time PCR analysis, results are 

shown for miR-21 expression after transfection with pre-21 compared to Pre-Ctrl (A) and with LNA-

21, compared to LNA-Ctrl (B). The statistical analysis used is Student’s unpaired T-test. Data are 

shown as mean ±SEM of 3 individual experiments. ***P < 0.001 vs. Pre-Ctrl and LNA-Ctrl. 

 

We then analyzed the EC marker expression in iPSCs differentiated with VEGF for 

three days and then transfected with miR-21 precursor and inhibitor.  

Transfection with Pre-21 led to an upregulation of approximately 5- and 2.5-fold in 

the expression of the EC markers VE-cadherin and Flk1, respectively (Figure 34, A 
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and C). Whereas, after transfecting the cells with LNA-21 we did not observe any 

significant change in the EC marker expression (Figure 34, B and D). 

 

 

Figure 34 Analysis of EC marker expression in iPSCs differentiated with VEGF, after miR-21 

overexpression and inhibition 

iPSCs differentiated for 3 days on collagen IV and in differentiation medium containing VEGF were 

transfected with miR-21 precursor (Pre-21), inhibitor (LNA-21) and the negative controls of the miR-

21 precursor (Pre-Ctrl) and inhibitor (LNA-Ctrl). Real time PCR analysis was performed 48h later. 

Results are shown for the EC markers VE-cadherin (VE-cad) (A and B) and Flk1 (C and D), after 

miR-21 overexpression and inhibition. The statistical analysis used is Student’s unpaired T-test (the 

mean ±SEM of 4 individual experiments is shown). *P < 0.05 and **P < 0.01 vs. Pre-Ctrl.  

 

In accordance with the Real time PCR results, protein expression analysis on iPSCs 

transfected with Pre-21 confirmed the increased expression of the EC markers VE-

cadherin and CD31, compared to Pre-Ctrl (Figure 35, A and C). Surprisingly, despite 

no detectable changes in gene expression, transfection with LNA-21 led to a 

decrease in the protein levels of these markers (Figure 35, B and D). 



141 

 

 

Figure 35 Protein analysis of EC markers in iPSCs after miR-21 overexpression and inhibition 

iPSCs differentiated for 3 days on collagen IV and in differentiation medium containing VEGF were 

transfected with miR-21 precursor (Pre-21), inhibitor (LNA-21) or the negative controls of the miR-

21 precursor (Pre-Ctrl) and inhibitor (LNA-Ctrl). Protein expression was assessed after 48h by 

Western Blot analysis of VE-cadherin (VE-cad) (A and B) and CD31(C and D) after miR-21 

overexpression and inhibition. GAPDH was used as a loading control for cells transfected with Pre-

miR (E) and LNA (F).  

 

ECs, like SMCs which form the tunica media of all the blood vessels, and cardiac 

cells are derived from the embryonic mesoderm layer. Indeed, in order to exclude a 

non-specific effect of miR-21 on the differentiation of iPSCs towards the SMC or 

other mesoderm cell lineages, we investigated the expression of markers typical of 

these cell types after miR-21 overexpression and inhibition.  

Real time PCR was performed after transfecting VEGF-differentiated iPSCs with 

Pre-21 and showed some upregulation in the expression of the SMC markers 

calponin and smooth muscle actin (SMA), but no statistical significance was 

detected (Figure 36, A and C). There were no changes in the expression levels of the 

SMC markers after transfection with miR-21 inhibitor (Figure 36, B and D). 
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Figure 36 Analysis of SMC marker expression in iPSCs differentiated with VEGF, after miR-21 

overexpression and inhibition 

iPSCs differentiated for 3 days on collagen IV and in differentiation medium containing VEGF were 

transfected with miR-21 precursor (Pre-21), inhibitor (LNA-21) and the negative controls of the miR-

21 precursor (Pre-Ctrl) and inhibitor (LNA-Ctrl). Real time PCR analysis was performed after 48h. 

Results are shown for Calponin (A and B) and Smooth muscle actin (SMA, C and D). The data are 

representative of three independent experiments. The statistical analysis used is Student’s unpaired T-

test. Data are presented as mean ±SEM of 3 individual experiments. No results were significant (*P < 

0.05). 

 

 

Furthermore, we analyzed the expression of the cardiac markers GATA4 and 

MEF2C and could not detect any significant changes in their expression, even if a 

trend could be observed for GATA4 (Figure 37, A-D).  
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Figure 37 Analysis of SMC marker expression in iPSCs differentiated with VEGF, after miR-21 

overexpression and inhibition 

iPSCs differentiated for 3 days on collagen IV and in differentiation medium containing VEGF were 

transfected with miR-21 precursor (Pre-21), inhibitor (LNA-21) and the negative controls of the miR-

21 precursor (Pre-Ctrl) and inhibitor (LNA-Ctrl). Real time PCR analysis was performed after 48h. 

Results are shown for GATA4 (A and B) and MEF2C (C and D). The statistical analysis used is 

Student’s unpaired T-test. Data are shown as mean ±SEM of 3 individual experiments. No results 

were significant (*P < 0.05). 

 

After having excluded an effect of miR-21 on any other cell type of the mesodermal 

lineage, we proceeded to test its effect on the endoderm and ectoderm. 

After transfecting differentiated iPSCs with precursor or inhibitor of miR-21, no 

significant differences were observed in the expression levels of the pancreatic 

marker Nkx 6.1 (Figure 38, A and B) or the liver marker alpha-fetoprotein (AFP) 

(Figure 38, C and D), both derived from the endoderm.  
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Figure 38 Analysis of pancreatic and liver marker expression in iPSCs differentiated with 

VEGF, after miR-21 overexpression and inhibition 

iPSCs differentiated for 3 days on collagen IV and in differentiation medium containing VEGF were 

transfected with miR-21 precursor (Pre-21), inhibitor (LNA-21) and the negative controls of the miR-

21 precursor (Pre-Ctrl) and inhibitor (LNA-Ctrl). Real time PCR analysis performed after 48h; results 

are shown for Nkx 6.1 (A and B) and alpha-fetoprotein (AFP, C and D). The statistical analysis used 

is Student’s unpaired T-test. Data are presented as mean ±SEM of 3 individual experiments. No 

results were significant (*P < 0.05). 

 

Similarly, results obtained from the analysis of the ectoderm markers, showed no 

significant changes in the expression of neuronal or epidermal markers. Results after 

miR-21 overexpression (Figure 39, A and C) and inhibition (Figure 39, B and D) are 

shown for the neuronal marker beta3 tubulin (β3 tubulin) and the epidermal marker 

Krt 2-5. 
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Figure 39 Analysis of neuronal and epidermal markers expression in iPSCs differentiated with 

VEGF, after miR-21 overexpression and inhibition 

iPSCs differentiated for 3 days on collagen IV and in differentiation medium containing VEGF were 

transfected with miR-21 precursor (Pre-21), inhibitor (LNA-21) and the negative controls of the miR-

21 precursor (Pre-Ctrl) and inhibitor (LNA-Ctrl). Real time PCR analysis was performed after 48h; 

results are reported for beta 3 tubulin (β3 tubul, A and B) and Krt 2-5 (C and D). The statistical 

analysis used is Student’s unpaired T-test. Data are shown as mean ±SEM of 3 individual 

experiments. No results were significant (*P < 0.05). 

 

 

In conclusion, the expression levels of SMC, cardiac, endoderm and ectoderm 

markers were not affected by miR-21 overexpression and inhibition. We confirmed 

that miR-21 specifically regulates iPSC differentiation towards ECs and not towards 

any other cell type.  
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3.2.5.3 MiR-21 regulates the functional differentiation of iPSCs into ECs in in 

vitro angiogenesis assay 

The next step to confirm the specific role of miR-21 in iPSC differentiation into ECs 

was to assess whether this miRNA is able to drive the functional differentiation of 

the cells, modulating the cell organization into tube-like structures.  

Therefore, we performed an in vitro angiogenesis assay on iPSCs differentiated with 

VEGF for four days and then transfected with Pre-21, Pre-Ctrl, LNA-21 or LNA-

Ctrl.  

Results showed that cells transfected with miR-21 were endowed with increased 

capacity for tube-like structure formation in Matrigel (Figure 40, B), as compared to 

the cells transfected with Pre-Ctrl (Figure 40, A). Results of the in vitro angiogenesis 

assay were then quantified measuring the total tube length; transfection with Pre-21 

increased the total tube length by approximately 4 fold (Figure 40, C).  
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Figure 40 In vitro angiogenesis assay in iPSCs transfected with miR-21 

iPSCs differentiated for four days on collagen IV in differentiation medium containing VEGF, were 

transfected with miR-21 precursor (Pre-21) or precursor negative control (Pre-Ctrl). After a further 

72h of differentiation, cells were seeded on Matrigel and incubated for 7-8h to test their angiogenesis 

potential. Representative images show the increased tube formation capacity in the cells transfected 

with Pre-21 (B), as compared to precursor negative control (A). Results were confirmed by total tube 

length quantification in the cells transfected with Pre-21 and Pre-Ctrl (C). The statistical analysis used 

is Student’s unpaired T-test. Data are shown as mean ±SEM of 3 individual experiments. *P < 0.05 

vs. Pre-Ctrl. Scale bar, 25 μm. 

 

On the other hand, inhibition of miR-21 in differentiating iPSCs seeded onto 

Matrigel in vitro decreased the capacity of the cells to form a tube network. Results 

showed that transfection with LNA-21 (Figure 41, B) impaired the ability of the cells 

to form tube-like structures, as compared to transfection with LNA-Ctrl (Figure 41, 
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A). Total tube length quantification showed that LNA-21 transfected iPSCs had total 

tube lengths decreased by approximately 50% (Figure 41, C).  

 

 

Figure 41 In vitro angiogenesis assay in iPSCs transfected with miR-21 inhibitor 

iPSCs differentiated for four days on collagen IV in differentiation medium containing VEGF, were 

transfected with miR-21 inhibitor (LNA-21) and inhibitor negative control (LNA-Ctrl). After a further 

72h of differentiation the cells were seeded on Matrigel and incubated for 7-8h to test their angiogenic 

potential. Representative images show tube formation capacity in the cells transfected with LNA-21 

(B), as compared to LNA-Ctrl (A). Results were confirmed by total tube length quantification (C). 

The statistical analysis used is Student’s unpaired T-test. Data are presented as mean ±SEM of 3 

individual experiments. *P < 0.05 vs. LNA-Ctrl. Scale bar, 25 μm. 
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Indeed, we showed that miR21 is able to drive the functional differentiation of iPSCs 

as shown by their increased capacity for organisation into tube-like structures in an 

in vitro angiogenesis assay. Accordingly, in response to miR-21 inhibition we 

observed a reduction in tube formation, indicating a reduction in functional 

differentiation. 

 

3.2.5.4 MiR-21 regulates the functional differentiation of iPSCs into ECs in an 

in vivo angiogenesis assay  

The results obtained so far indicated that miR-21 is able to induce iPSCs to 

differentiate towards the endothelial lineage and to form tube-like structures in vitro. 

Next, we aimed at assessing the effect of miR-21 in an in vivo angiogenesis assay. 

iPSCs were differentiated in the presence of VEGF for 4 days and then transfected 

with Pre-21, Pre-ctrl, LNA-21 and LNA-ctrl and then mixed with Matrigel and 

injected subcutaneously into nude C57BL/6 mice. After the injections, the Matrigel 

rapidly formed a subcutaneous plug that was collected after 7 days for capillary 

quantification. After 7 days, plugs were removed and cryosections were prepared. 

We stained the sections in hematoxylin and eosin or we performed 

immunohistochemistry for CD31 and VE-cadherin to quantify capillary density. 

Immunohistochemical analysis of the Matrigel plugs showed a significant induction 

in the density of CD31+ capillaries in the plugs seeded with miR-21 transfected cells 

(Figure 42, B), as compared to the control cells (Figure 42, A). Results of the 

capillary density quantification showed a 2.7 fold induction in the number CD31-

positive capillaries per mm
2
 in miR-21 overexpressing cells (Figure 42, C). 

 

 

 

 

 



150 

 

 

Figure 42 miR-21 overexpression increases the number of CD31-positive capillaries in in vivo 

Matrigel plugs 

iPSCs differentiated for four days on collagen IV in differentiation medium containing VEGF, were 

transfected with miR-21 precursor (Pre-21) and precursor negative control (Pre-Ctrl). After further 

72h of differentiation the cells were mixed with Matrigel and subcutaneously injected into mice for 1 

week to test their angiogenic potential. Confocal microscopy images showed increased number of 

CD31
+
 capillaries in plugs containing the cells transfected with Pre-21 (B), as compared to Pre-Ctrl 

(A). Results were confirmed by capillary density quantification (C). The statistical analysis used is a 

Student’s unpaired T-test. Data are shown as mean ±SEM of 3 individual experiments. ***P < 0.001 

vs. Pre-Ctrl. Scale bar, 100 μm. 

 

Additionally, to confirm these results we quantified the number of VE-cadherin 

positive capillaries and found a similar trend, where the number of capillaries was 

induced by miR-21 overexpression (Figure 43, B), as compared to Pre-Ctrl (Figure 



151 

 

43, A). Quantification of VE-cadherin
+
 capillaries showed 2.3 folds of induction by 

miR-21(Figure 43, C). 

 

 

Figure 43 miR-21 overexpression induces the number of VE-cadherin-positive capillaries in 

matrigel plaques 

iPSCs differentiated for four days on collagen IV in differentiation medium containing VEGF, were 

transfected with miR-21 precursor (Pre-21) and precursor negative control (Pre-Ctrl). After a further 

72h of differentiation the cells were mixed with Matrigel and subcutaneously injected into the mice 

for 1 week to test the angiogenesis potential. Confocal microscopy imaging revealed a higher density 

of VE-cadherin (VE-cad)-positive capillaries in plugs seeded with Pre-21 transfected cells (B), as 

compared to Pre-Ctrl (A). Results were confirmed by capillary density quantification of the number of 

VE-cad
+
 capillaries per mm

2 
(C). The statistical analysis used is Student’s unpaired T-test. Data are 

presented as mean ±SEM of 3 individual experiments. ***P < 0.001 vs. Pre-Ctrl. Scale bar, 100 μm. 
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To confirm the results obtained with the cells transfected with Pre-21, we knocked 

down miR-21 expression by transfecting the cells with LNA-21 and used them in an 

in vivo Matrigel plug assay. Similarly to the results obtained in vitro, inhibition of 

miR-21 led to a decreased number of capillaries positive for the endothelial cell 

markers CD31 (Figure 44, B) and VE-cadherin (Figure 45, B), as compared to LNA-

Ctrl (Figure 44 A and 45 A, respectively). 

Quantification of capillary density indicated a significant reduction in the number of 

CD31-and VE-cadherin-positive capillaries per unit of area (Figure 44, C and 45, C, 

respectively).  

 



153 

 

 

Figure 44 miR-21 inhibition decreases the number of CD31-positive capillaries in Matrigel 

plugs 

iPSCs differentiated for four days on collagen IV in differentiation medium containing VEGF, were 

transfected with miR-21 inhibitor (LNA-21) and inhibitor negative control (LNA-Ctrl). After a further 

72h of differentiation the cells were mixed with Matrigel and subcutaneously injected into the mice 

for 1 week to test their angiogenic potential. Confocal microscopy images of the Matrigel plugs show 

CD31-positive capillaries in the cells transfected with LNA-21 (B), as compared to LNA-Ctrl (A). 

Capillary density was calculated by quantification of the number of CD31-positive capillaries per unit 

of area
 
(C). The statistical analysis used is Student’s unpaired T-test. Data are shown as mean ±SEM 

of 3 individual experiments. ***P < 0.001 vs. LNA-Ctrl. Scale bar, 100 μm. 

 

 

Similar results were obtained when the Matrigel plugs were stained and quantified 

for VE-cadherin
+
 capillaries (Figure 45). 
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Figure 45 miR-21 inhibition decreases the number of VE-cadherin-positive capillaries in 

Matrigel plugs 

iPSCs differentiated for four days on collagen IV and differentiation medium containing VEGF, were 

transfected with miR-21 inhibitor (LNA-21) and inhibitor negative control (LNA-Ctrl). After a further 

72h of differentiation the cells were mixed with Matrigel and subcutaneously injected into the mice 

for 1 week to test their angiogenic potential. Confocal microscopy showed a decreased number of VE-

cadherin (VE-cad)-positive capillaries in the cells transfected with LNA-21 (B), as compared to LNA-

Ctrl (A). Results were confirmed by capillary density quantification of the number of VE-cad-positive 

capillaries per mm
2 
(C). The statistical analysis used is Student’s unpaired t-test. Data are presented as 

mean ±SEM of 3 individual experiments. ***P < 0.001 vs. LNA-Ctrl. Scale bar, 100 μm. 
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3.2.5.5 VEGF stimulation is required in miR-21-induced EC differentiation 

In the first part of this work we showed that VEGF is required for the differentiation 

of iPSCs into ECs. We also reported that iPSCs differentiated in the presence of 

VEGF display a specific miRNA profile and express more miR-21 than 

undifferentiated iPSCs. 

We showed that in iPSCs pre-differentiated with VEGF, miR-21 overexpression 

induces a functional differentiation of the cells into ECs.  In contrast, inhibition of 

miR-21 impairs iPSC differentiation into ECs and reduces capillary formation in 

vitro and in vivo.  

Next, we decided to examine the requirement for the VEGF stimulation in the 

process of miR-21-induced iPSC differentiation into ECs. 

In order to do so, we pre-differentiated iPSCs in DM without VEGF for 3 days and 

then we altered the expression levels of miR-21 in the cells. As described previously, 

cells were transfected with precursor (Pre-21), negative control precursor (Pre-Ctrl) 

or inhibitor of miR-21 (LNA-21) and negative control of miRNA inhibitor (LNA-

Ctrl) and then expression levels of mature miR-21 were assessed.  

The expression of miR-21 increased by approximately 60 fold after Pre-21 

transfection when compared to the negative control, indicating that transfection of 

Pre-21 increased mature miR-21 expression (Figure 46, A). We then overexpressed 

miR-21 inhibitor, and detected a 33-fold reduction in the mature miRNA expression 

as compared to the negative control (Figure 46, B). 
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Figure 46 miR-21 overexpression and inhibition in iPSCs differentiated in absence of VEGF 

iPSCs were seeded for three days on collagen IV and cultured in differentiation medium without 

VEGF. In order to alter the levels of miR-21, cells were transfected with precursor (Pre-21), negative 

control precursor (Pre-Ctrl), inhibitor of miR-21(LNA-21) and negative control of miRNA inhibitor 

(LNA-Ctrl), using lipofectamin RNAiMAX. After 48h gene expression was assessed by Real time 

PCR analysis. Results show miR-21 expression levels after transfection with Pre-21, compared to Pre-

Ctrl (A) and after transfection with LNA-21, compared to LNA-Ctrl (B). ). The statistical analysis 

used is Student’s unpaired t-test. Data are shown as mean ±SEM of 3 individual experiments. ***P < 

0.001 vs. Pre-Ctrl and LNA-Ctrl. 

 

Subsequently, we then analyzed the EC marker expression in iPSCs pre-

differentiated without VEGF, after miR-21 overexpression and inhibition. 

Transfection with Pre-21 did not alter the expression of VE-cadherin, as compared to 

cells transfected with Pre-Ctrl (Figure 47, A). Flk1 gene expression was increased by 

approximately two fold by Pre-21, but this result was not statistically significant 

(Figure 47, C).  

After transfecting the cells with LNA-21, we did not observe any significant 

downregulation in the EC marker expression (Figure 47, B and D). 
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Figure 47 Analysis of the EC marker expression in iPSCs differentiated in the absence of 

VEGF, after miR-21 overexpression and inhibition 

iPSCs differentiated for 3 days on collagen IV and in differentiation medium without VEGF were 

transfected with miR-21 precursor (Pre-21), inhibitor (LNA-21) and the negative controls of the miR-

21 precursor (Pre-Ctrl) and inhibitor (LNA-Ctrl). Gene expression was analysed by Real time PCR in 

samples collected after 48h. Results are shown for VE-cadherin (VE-cad, A and B) and Flk1 (C and 

D) after miR-21 overexpression and inhibition. The statistical analysis used is Student’s unpaired T-

test. Data are shown as mean ±SEM of 3 individual experiments. No results were significant (*P < 

0.05). 

In conclusion, without adding VEGF to the iPSCs differentiation system, miR-21 

induction of the EC marker expression was abolished. These data indeed show that 

the action of this cytokine is required for miR-21 induced iPSC differentiation into 

ECs. 
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3.2.6 Conclusions  

In conclusion, in this second part of our study we characterized the miRNA signature 

typical of iPSC during their differentiation towards an EC lineage. 

We performed a miRNA array on iPSCs differentiated for 3 days in presence of 

VEGF and undifferentiated and we confirmed a differential expression of five 

miRNAs in the two groups of cells. 

We also performed a miRNA array on iPSCs differentiated for 3 days on collagen 

IV, in static condition and compared them to iPSCs cultured in the same way, but 

subjected to 48h of shear stress. However, due to the lack of reproducibility of the 

experiments performed with shear stress application, we could not confirm 

differential expression of any miRNAs in the two groups of cells. 

Amongst the five validated miRNAs obtained from the differentiated vs. 

undifferentiated array, we further investigated the role of miR-20b and of miR-21 in 

driving EC differentiation. Results showed no indication of EC differentiation in 

cells transfected with miR-20b, but significant upregulation of EC markers by miR-

21. 

Further studies, allowed us to establish that miR-21 was able to specifically induce 

EC marker expression exclusively in cells pre-differentiated in the presence of 

VEGF. 

Furthermore, in vitro and in vivo tube formation assays revealed that miR-21 also 

induced functional differentiation of iPSCs, promoting the organization of the cells 

into tube-like structures on Matrigel. 
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3.3 IDENTIFICATION OF THE MOLECULAR 

TARGETS OF MiRNA-21: TGF-β2 PATHWAY IS 

A DOWNSTREAM TARGET OF MiR-21 AND 

DRIVES iPSC DIFFERENTIATION INTO ECs 

In the present study we so far optimized a differentiation protocol for iPSCs 

differentiation into ECs involving the use of VEGF. Based on this protocol we 

characterized a miRNA signature during the iPSC differentiation process and in 

particular we found that miR-21 plays a role in specifically inducing iPSC 

differentiation towards the EC lineage.  

At this point we aimed to elucidate the molecular mechanisms which occur during 

the miR-21 induced differentiation of iPSCs. Indeed, we started by identifying the 

molecular targets of miR-21 in order to elucidate the signalling pathways involved in 

the differentiation process. 

 

3.3.1 Screening for the potential target genes of miR-21 

The next important step in this work is the identification of the molecular targets of 

miR-21, using bioinformatic tools and in silico target screenings. 

As mentioned before, miRNAs induce mRNA degradation and post-transcriptional 

gene silencing by binding to conserved regions in the 3’ untranslated region (UTR) 

of target mRNAs (Pillai, Bhattacharyya et al. 2007). 

In order to identify putative target genes regulated by miR-21 and involved in the 

control of iPSC differentiation, we evaluated targets predicted by several of the 

available algorithms. In particular, we used a miRNA target database (miRGEN) 

based on the intersection of four prediction algorithms: DIANA-micro-T, miRanda, 

Pic Tar and TargetScanS. From the lists of in silico predicted targets, we focused on 

genes that may be involved in the angiogenic processes. Among those we analyzed 

genes regulating endothelial cell function and vessel growth, such as transforming 

growth factor receptor II (TGF-βRII), the regulator of ERK activation Sprouty 1 

(SPRY1), the RhoGTPase RhoB and Sox7. From the same list we also searched for 

genes encoding for regulators of cell migration such as vinculin (Vcl). 
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Together with the predicted targets, we also considered other pathways that were 

implicated with miR-21 in several published papers. For instance, miR-21 is known 

to be involved in the hypoxia-inducible factor 1-alpha (HIF1α) pathway, which 

induces tumor angiogenesis through stimulation of VEGF gene expression (Kong, 

Kong et al. 2012). Furthermore, we considered the Wnt signalling pathway, which 

has previously been found to be involved in EC proliferation and differentiation 

during development and healing and also in physiological and pathological 

angiogenesis (Logan and Nusse 2004, Dejana 2010). Furthermore the Wnt/β-catenin 

signalling pathway has been reported to play a role in cardiomyocyte differentiation 

from human pluripotent stem cells (Lian, Zhang et al. 2013). Moreover, wnt5a has 

been shown to drive the EC differentiation of ESCs, through both Wnt/β-catenin and 

Protein Kinase Cα and is implicated in vascular development in vivo (Yang, Yoon et 

al. 2009). 

Analysis of miR-21 regulation of the chosen genes from miRgen or part of the Wnt 

and the HIF1α/VEGF signalling pathways is reported in Figure 48 and 49. 

Interestingly, we found that transfection with miR-21 inhibitor was able to reduce 

VEGF gene expression. These results highlighted the possibility of a mutual 

regulation between miR-21 and VEGF during iPSC differentiation, by showing that 

not only VEGF regulates miR-21 expression, but also miR-21 is important in the 

regulation of VEGF, since cells lacking miR-21expressed reduced amount of VEGF 

mRNA (Figure 49).  
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Figure 48 Analysis of the expression of potential targets of miR-21 after overexpression 

iPSCs differentiated for 3 days on collagen IV and in DM containing VEGF were transfected with 

miR-21 precursor (Pre-21) or the negative control of the miR-21 precursor. Real time PCR analysis 

was performed after 48h. Results show the expression levels of some of the genes predicted by 

MiRgen database and some genes from the Wnt signalling pathway, after miR-21 overexpression. 

The statistical analysis used is Student’s unpaired T-test. Data are shown as mean ±SEM of 3 

individual experiments. No results were significant (*P < 0.05). 
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Figure 49 Analysis of the expression of potential targets of miR-21, after its inhibition 

iPSCs differentiated for 3 days on collagen IV and in DM containing VEGF were transfected with 

miR-21 inhibitor (LNA-21) and the negative control of the miR-21 inhibitor. Real time PCR analysis 

was performed after 48h. Results show the expression levels of some of the genes predicted by the 

MiRgen database and some genes from the Wnt signalling pathway, after miR-21 inhibition. The 

statistical analysis used is Student’s unpaired T-test. Data are presented as mean ±SEM of 3 

individual experiments. No results were significant (*P < 0.05), except for VEGFA expression (***P 

< 0.001 vs LNA-Ctrl).  

 

3.3.2 TGF-β2 is a downstream target of miR-21 

Despite the lack of variation in the other genes identified through miRGEN, we 

decided to expand our investigation starting from other two predicted targets, TGF-

βRII and transforming growth factor-beta-induced (TGF-βI), which are known 

components of the TGF-β signalling pathway. 

TGF-β is a multifunctional cytokine which regulates proliferation, migration, 

differentiation and survival of many different cell types (Munger, Harpel et al. 

1997); in mammals there are three known isoforms, TGF-β1, TGF-β2 and TGF-β3, 

with distinct and shared functions. Interestingly, knockout studies for the different 

components of the TGF-β signalling pathway have shown the pivotal role of TGF-β 
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signalling in angiogenesis. Deletions of many members of the TGF-β family, such as 

TGF-β1, TGF-βRII, TGF-βRI or ALK5, SMAD1, 4 and 5 cause vascular 

remodelling defects and the absence of mural cell formation, thus leading to 

embryonic lethality (Pardali and Ten Dijke 2009). Moreover, mutations in ALK1 

and the accessory TGF-β receptor endoglin led to hereditary hemorrhagic 

telangiectasia, a severe vascular disorder (Bertolino, Deckers et al. 2005, Lebrin, 

Deckers et al. 2005).   

Indeed, we decided to investigate the role of the TGF-β signalling pathway in miR-

21-dependent iPSCs differentiation. We firstly analyzed the effect of miR-21 on the 

expression of TGF-βRII and TGF-βI. However, Q-PCR results showed that miR-21 

overexpression (Figure 50, A and C) and inhibition (Figure 50, B and D) did not 

affect the expression levels of these genes. 
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Figure 50 Analysis of TGF-βRII and TGF-βI expression after miR-21 overexpression and 

inhibition 

iPSCs differentiated for 3 days on collagen IV and in DM containing VEGF were transfected with 

miR-21 precursor (Pre-21), inhibitor (LNA-21) and the negative controls of the miR-21 precursor 

(Pre-Ctrl) and inhibitor (LNA-Ctrl) and samples for Real time PCR were collected after 48h. Results 

show the expression levels of transforming growth factor-beta receptor II (TGF-βRII, A and B) and 

transforming growth factor-beta-induced (TGF-βI, C and D) after miR-21 overexpression and 

inhibition. The statistical analysis used is Student’s unpaired T-test. Data are presented as mean 

±SEM of 3 individual experiments. No results were significant (*P < 0.05). 

Additionally, we analysed the expression of other components of this pathway, such 

as TGF-βRI, TGF-β1 and TGF-β2. The analysis of the results showed that the 

expression of TGF-β1 and TGF-βRI was not affected by miR-21 overexpression 

(Figure 51, A and C) or inhibition (Figure 51 B and D). 
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Figure 51 Analysis of the TGF-β1 and TGF-βRI expression in iPSCs differentiated with VEGF 

after miR-21 overexpression and inhibition 

iPSCs differentiated for 3 days on collagen IV and in differentiation medium with VEGF were 

transfected with miR-21 precursor (Pre-21), inhibitor (LNA-21) and the negative controls of the miR-

21 precursor (Pre-Ctrl) and inhibitor (LNA-Ctrl) and samples for Real time PCR were collected after 

48h. Results show the expression levels of transforming growth factor-beta1 (TGF-β1, A and B) and 

transforming growth factor-beta receptor I (TGF-βRI, C and D) after miR-21 overexpression and 

inhibition. The statistical analysis used is Student’s unpaired T-test. Data are shown as mean ±SEM of 

3 individual experiments. No results were significant (*P < 0.05). 

 

Finally, analysis of TGF-β2 gene expression revealed approximately 2 fold induction 

upon miR-21 overexpression (Figure 52, A). On the other hand, after miR-21 

inhibition the gene expression of TGF-β2 was slightly, but not significantly 

diminished (Figure 52, B). 
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Figure 52 Analysis of TGF-β2 expression in iPSCs pre-differentiated with VEGF, after miR-21 

overexpression and inhibition 

iPSCs differentiated for 3 days on collagen IV and in DM containing VEGF were transfected with 

miR-21 precursor (Pre-21), inhibitor (LNA-21) and the negative controls of the miR-21 precursor 

(Pre-Ctrl) and inhibitor (LNA-Ctrl) and samples for Real time PCR were collected after 48h. Results 

show TGF-β2 expression levels after transfection with Pre-21, compared to Pre-Ctrl (A) and after 

transfection with LNA-21, compared to LNA-Ctrl (B). The statistical analysis used is Student’s 

unpaired T-test. Data are presented as mean ±SEM of 3 individual experiments. *P < 0.05 vs. Pre-

Ctrl.  

 

We performed ELISAs in order to confirm that the increase in TGF-β2 mRNA after 

miR-21 transfection corresponded to an increase in the secreted protein. An ELISA 

specific for TGF-β2 showed a 2-fold increase in the protein in the supernatants of 

cells transfected with Pre-21 (Figure 53, A). Interestingly, we also observed a 

significant decrease in the secreted protein after miR-21 inhibition (Figure 53, B).  
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Figure 53 Analysis of TFG-β2 secretion after miR-21 overexpression and inhibition 

iPSCs differentiated for 3 days on collagen IV and in differentiation medium containing VEGF were 

transfected with miR-21 precursor (Pre-21), inhibitor (LNA-21) and the negative controls of the miR-

21 precursor (Pre-Ctrl) and inhibitor (LNA-Ctrl) and supernatants were collected for ELISA analysis 

after 48h. Results show the secretion level of TGF-β2 after transfection with Pre-21 and Pre-Ctrl (A) 

and after transfection with LNA-21, as compared to LNA-Ctrl (B). The statistical analysis used is 

Student’s unpaired T-test. Data are shown as mean ±SEM of 3 individual experiments. *P < 0.05 vs. 

Pre-Ctrl and LNA-Ctrl.  

 

From the data showed above we could conclude that miR-21 induced the expression 

and the secretion of TGF-β2, which indeed can be considered a downstream target of 

the miRNA.   

 

3.3.3 TGF-β2 pathway is required in the miR-21-inducing iPSC 

differentiation into ECs 

To further determine whether TGF-β2 is an essential downstream molecule 

mediating miR-21-inducing EC differentiation, iPSCs were differentiated with 

VEGF for 3 days and then transfected with pre-21 and its control. After 5h from 

transfection, the cells were treated with 1µg/ml TGFβ-2 neutralizing antibody or IgG 

as a control. 48h after transfection the cells were harvested and the protein 

expression was analyzed.  

Real time PCR analysis showed that treating the cells with 1µg/ml TGFβ-2 

neutralizing antibody inhibited miR-21-induced VE-cad upregulation, as compared 

to IgG control (Figure 54). 
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Figure 54 TGF-β2 is required in miR-21 induced iPSC differentiation into ECs 

iPSCs differentiated for 3 days on collagen IV and in differentiation medium containing VEGF were 

transfected with miR-21 precursor (Pre-21) and precursor control (Pre-Ctrl). After 5h from 

transfection, 1µg/ml TGF-β2 neutralizing antibody (TGF-β2 Ab) or IgG, as a control were added to 

the culture medium. Q-PCR performed 48h after transfection shows the expression levels of VE-

cadherin (VE-cad). The statistical analysis used is 1way ANOVA for multiple comparisons. Data are 

presented as mean ±SEM of 3 individual experiments. ***P < 0.001 vs. Pre-Ctrl IgG and vs. Pre-21 

IgG. 

 

Western Blot analysis for CD31 expression level confirmed that TGF-β2 is required 

in miR-21 induced iPSC differentiation into ECs. In particular, miR-21-induced 

CD31 upregulation observed in the cells treated with IgG as a control was abolished 

by treatment with 1µg/ml TGFβ-2 neutralizing antibody (Figure 55). 
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Figure 55 Analysis of CD-31 protein expression in iPSCs transfected with miR-21 precursor and 

treated with TGF-β2 antibody 

iPSCs were transfected with miR-21 precursor (Pre-21) and precursor control (Pre-Ctrl) after 3 days 

of differentiation on collagen IV and in differentiation medium containing VEGF. After 5h from 

transfection, 1µg/ml TGF-β2 neutralizing antibody (TGF-β2 Ab) or IgG, as a control, was added to 

the culture medium. Protein expression was assessed after 48h by Western Blot analysis of CD31 (A). 

GAPDH was used as a loading control (B).  

These data suggest that the induction of TGFβ-2 is necessary for miR-21 to drive 

iPSC differentiation into ECs.  

 

3.3.4 TGF-β2 pathway regulates iPSC differentiation into ECs 

At this point we decided to investigate the involvement of TGF-β2 miR-21-

dependent iPSC differentiation into ECs. In order to do so, we first analyzed its 

expression during VEGF-induced EC differentiation.   

 

3.3.4.1 TGF-β2 expression is increased during VEGF-induced iPSC 

differentiation 

Data collected so far demonstrated that TGF-β2 plays a role in the differentiation of 

iPSCs towards the endothelial lineage. We therefore analyzed its expression during 

the first 7 days of differentiation with VEGF. As results showed, TGF-β2 expression 

was increased 50 and 200-fold, after 5 and 7 days respectively (Figure 56, A). In 

contrast, TGF-β1 was increased by approximately 5 and 10 fold after 5 and 7 days, 

and its expression was highly variable among experiments (Figure 56, B).  
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Figure 56 Analysis of TGF-β2 and TGF-β1 gene expression during VEGF induced iPSC 

differentiation 

iPSCs were seeded on collagen IV and cultured in differentiation medium with 50ng/ml VEGF. Gene 

expression analysis was performed by real-time PCR after 3, 5, and 7 days of differentiation. Results 

are shown for transforming growth factor-β2 (TGF-β2, A) and transforming growth factor-β1 (TGF-

β1, B). The statistical analysis used is 1way ANOVA for multiple comparisons. Data are presented as 

mean ±SEM of 3 individual experiments. ***P < 0.001 vs. d0 (d0 represents iPSCs seeded on gelatin 

and cultured in undifferentiated conditions). 

 

Next, we analyzed the expression of the receptors of TGF-β signalling during the 

VEGF-induced iPSC differentiation. Consistent with the expression of the ligands, 

we found a strong upregulation of TGF-βRII and III of approximately 20 and 200 

fold after 7 days (Figure 57, B and C). Although a trend was visible, the TGF-βRI 

gene was upregulated to a lesser extent and not always consistently (Figure 57, A). 
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Figure 57 Analysis of TGF-βRIII, II and I expression during VEGF induced iPSC 

differentiation 

iPSCs were seeded on collagen IV and cultured in differentiation medium with 50ng/ml VEGF. Gene 

expression analysis was performed by real-time PCR after 3, 5, and 7 days of differentiation. Results 

are shown for transforming growth factor-β receptor III (TGF-βRIII, A), transforming growth factor-β 

receptor II (TGF-βRII, B) and transforming growth factor-β receptor I (TGF-βRI, C). The statistical 

analysis used is 1way ANOVA for multiple comparisons. Data are shown as mean ±SEM of 3 

individual experiments. *P < 0.05 and **P < 0.01 vs. d0 (d0 represents iPSCs seeded on gelatin and 

cultured in undifferentiated conditions). 

 

We showed that the expression of TGF-β2 and its receptors TGF-βRIII and II is 

increased during the VEGF-induced iPSC differentiation after 5 and 7 days. On the 

other hand, the expression of TGF-β1 and its receptor TGF-βRI was not significantly 

induced during the differentiation of iPSCs in presence of VEGF.  

These data indicate that TGF-β2 has a specific role during the iPSC differentiation 

process induced by VEGF. 

 

3.3.4.2 TGF-β2 treatment induces iPSC differentiation specifically 

towards EC lineage 

At this point, in order to clarify the role of TGF-β2 in iPSC differentiation, we 

treated iPSCs for up to 7 days with TGF-β2 and analyzed the expression of the 

endothelial cell markers.  
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Accordingly, as with previous results, our findings showed an upregulation of the 

endothelial markers VE-cadherin (VE-cad, Figure 58, A) and Flk1 (Figure 58, B) 

after TGF-β2 treatment. 

 

Figure 58 Analysis of EC marker expression in iPSCs treated with TGF-β2 

iPSCs were seeded on collagen IV and cultured in differentiation medium (DM) containing 3ng/ml 

TGF-β2. Gene expression analysis performed by real-time PCR after 7 days. Results show the 

expression levels of VE-cadherin (VE-cad) and Flk1 (B). The statistical analysis used is Student’s 

unpaired T-test. Data are presented as mean ±SEM of 3 individual experiments. *P < 0.05 and **P < 

0.01 vs. iPSCs differentiated for 7 days on collagen IV and in DM (DM). 

 

Protein analysis confirmed the upregulation of the EC markers observed at a gene 

expression level. Treatment of iPSCs with TGF-β2 for 7 days induced the expression 

of VE-cadherin (VE-cad, Figure 59, A) and CD31 (Figure 59, B), compared to 

untreated iPSCs in DM.  
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Figure 59 Protein expression analysis of EC markers in iPSCs treated with TGF-β2 

iPSCs were seeded on collagen IV and cultured in differentiation medium containing 3ng/ml TGF-β2 

(DM TGF-β2) or normal differentiation medium (DM). Protein expression was assessed by Western 

blot analysis after 7 days. Results are shown for VE-cadherin (Ve-cad, A) and CD31 (B). GAPDH 

was used as loading control (C). 

 

In order to exclude any unspecific effect of TGF-β2 on iPSC differentiation towards 

other mesodermal lineages, we analyzed the expression of SMC markers after 7 days 

of TGF-β2 treatment. The expression of smooth muscle myosin heavy chain (SM-

MHC), smooth muscle 22 (SM22) and calponin was not affected by treatment with 

TGF-β2 (Figure 60, A, B and C). 
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Figure 60 Analysis of SMC markers expression in iPSCs treated withTGF-β2 

iPSCs were seeded on collagen IV and cultured in differentiation medium (DM) containing 3ng/ml 

TGF-β2. Gene expression analysis performed by real-time PCR after 7 days. Results are shown for 

smooth muscle myosin heavy chain (A, SM-MHC), smooth muscle 22 (B, SM22) and calponin (C). 

The statistical analysis used is Student’s unpaired T-test. Data are shown as mean ±SEM of 3 

individual experiments. No results were significant (*P < 0.05).  

We could indeed confirm that TGF-β2 is able to drive iPSCs differentiation 

specifically towards the EC lineage. 

 

3.3.4.3 TGF-β2 promotes the functional differentiation of iPSCs  

To test the functionality of iPSCs after TGF-β2 treatment we performed in vitro 

angiogenesis assays. Cells treated for 7 days with TGF-β2 (Figure 61, B) showed 

increased tube formation ability, as compared to the untreated cells (Figure 61, A). 

The results of the assay were confirmed by total tube length quantification. TGF-β2 

treatment increased iPSC total tube length 7-fold (Figure 61, C).  
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Figure 61 In vitro angiogenesis assay in iPSCs differentiated with TGF-β2 

iPSCs were seeded on collagen IV and cultured in differentiation medium (DM) containing 3ng/ml 

TGF-β2. After 7 days cells were seeded on Matrigel and incubated for 7-8h to test the angiogenesis 

potential. Representative images show tube formation capacity in the cells treated with TGF-β2 (B) 

and untreated cell in DM (A). Results were confirmed by total tube length quantification (C). The 

statistical analysis used is Student’s unpaired T-test. Data are presented as mean ±SEM of 3 

individual experiments. ***P < 0.001 vs. DM (DM represents iPSCs seeded on collagen IV and 

cultured in differentiation medium). Scale bar, 25 μm. 

 

In vitro angiogenesis assays showed that TGF-β2 treatment promotes the functional 

differentiation of iPSCs, increasing the formation of tube-like structures on Matrigel. 

 

 



176 

 

3.3.4.4 Inhibition of SMAD3 abolishes TGF-β2 stimulation of VE-cadherin 

expression  

As already mentioned in the introduction section (1.3.4), the TGF-β family exerts its 

action on the cells via specific type I and type II serine/threonine kinase receptors 

and intracellular SMAD transcription factors. SMAD3, together with SMAD1, 

SMAD5, and SMAD8 and SMAD2 are part of the R-SMAD, and like SMAD2, are 

activated by the TGF-β-specific type I receptors (Massagué, Seoane et al. 2005). In 

ECs TGF-β has been shown to bind to TGF-βRI, ALK1, which induces SMAD1/5 

phosphorylation to potentiate angiogenic reactions; on the other hand, binding of 

TGF-β to ALK5, which is ubiquitously expressed in the majority of the cells, 

induces phosphorylation of SMAD2/3, thereby inhibiting proliferation, tube 

formation, and migration of ECs (Goumans, Valdimarsdottir et al. 2003). However, 

so far there are no studies reporting the role of SMAD3 in EC differentiation. 

Interestingly, in our system the inhibition of SMAD3 strongly reduced VE-cadherin 

expression, indicating the importance of the TGFβ-2/ SMAD3 pathway in the 

differentiation process of iPSCs.  

iPSCs were differentiated for 7 days on collagen IV and in DM with or without 

TGF-β2. From day 1 the cells were treated with 5µM SMAD3 inhibitor (SIS3) or 

DMSO as a control. Q-PCR results showed approximately two fold upregulation of 

VE-cadherin induced by TGF-β2 treatment. SMAD3 inhibition not only decreased 

the baseline expression level of VE-cadherin, but it also abolished the TGF-β2 

induction of the EC marker (Figure 62). 

 



177 

 

 

Figure 62 Inhibition of SMAD3 strongly reduces the baseline expression of VE-cadherin and 

abolished its induction by TGF-β2 

iPSCs were seeded on collagen IV and cultured in differentiation medium (DM) containing 3ng/ml 

TGF-β2 or not. From day 1 the cells were treated with 5μM Smad3 inhibitor or DMSO as a control. 

Gene expression analysis was assessed by real-time PCR after 7 days. Results show the expression 

levels of VE-cadherin (VE-cad) in the presence or absence of TGF-β2 treatment and Smad3 

inhibition. The statistical analysis used is 1way ANOVA for multiple comparisons. Data are presented 

as mean ±SEM of 3 individual experiments. *P < 0.05 vs. iPSCs differentiated for 7 days on collagen 

IV and in DM and ***P < 0.001 vs. iPSCs differentiated for 7 days on collagen IV and in DM 

containing 3ng/ml TGF-β2. 

 

These data demonstrated that the effect of TGF-β2 on iPSC differentiation is 

mediated by Smad3 and highlighted the importance of the TGF-β2 pathway in the 

differentiation of iPSC into ECs. 
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3.3.4.5 TGF-β2 induces EC differentiation of iPSCs through the secretion of 

VEGF 

In order to elucidate how TGF-β2 induces iPSC differentiation into ECs, we 

hypothesized an indirect mechanism of VEGF secretion.  

We performed ELISAs in order to analyze the secretion of VEGF after 7 days of 

treatment with TGF-β2. At this point the cells were serum-deprived overnight, and 

then the supernatants were concentrated and loaded into an ELISA microplate to 

analyze the secretion level of VEGF. Results showed a significant induction of 1.6 

fold in the secretion of VEGF after TGF-β2 treatment, as compared to untreated cells 

(Figure 63). 

 

 

Figure 63 Analysis of VEGF secretion in iPSCs treated with TGF-β2 for 7 days 

iPSCs were seeded on collagen IV and cultured in differentiation medium (DM) containing 3ng/ml 

TGF-β2. After 7 days, the medium was removed and refreshed with serum free alpha MEM 

overnight. Cell supernatants were then harvested and 7.7 fold-concentrated using centrifugal filter 

units. Samples of concentrated supernatants were used to perform ELISAs. Results show relative 

VEGF secretion after TGF-β2 treatment, as compared to untreated cells in DM. The statistical 

analysis used is Student’s unpaired T-test. Data are presented as mean ±SEM of 3 individual 

experiments. **P < 0.01 vs. iPSCs differentiated for 7 days on collagen IV and in DM (DM). 
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These data indicate that TGF-β2 promotes a specific and functional differentiation of 

iPSCs into ECs through induction of VEGF secretion. These results are in 

accordance with our previous data showing that miR-21 inhibition decreased VEGF 

gene expression, thus supporting the hypothesis of a link between miR-21, TGF-β2 

and VEGF pathways. 

To further confirm that VEGF secretion is required for TGF-β2 induced iPSC 

differentiation into ECs, we treated iPSCs for 7 days with TGF-β2 in the presence of 

0.1μg/ml VEGF neutralizing antibody or IgG as a control and analyzed the 

expression of the EC markers. 

Results of Western Blots showed that treatment with VEGF blocking antibody 

reduced the TGF-β2-dependent increase of VE-cadherin, as compared to control 

cells (Figure 64). 

 

 

Figure 64 Protein expression analysis of VE-cadherin in iPSCs treated with TGF-β2 and VEGF 

neutralizing antibody 

iPSCs were seeded on collagen IV and cultured in differentiation medium containing 3ng/ml TGF-β2 

or not for 7 days. From day one either 0.1µg/ml VEGF neutralizing antibody or IgG was added to the 

cells as a control. Protein expression was assessed by Western blot analysis after 7 days. Results are 

shown for VE-cadherin (VE-cad, A). GAPDH was used as loading control (B). 
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These results show that VEGF secretion is necessary for the TGF-β2 induced iPSC 

differentiation into ECs. 
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3.3.5 Conclusions  

In this section of the work we presented a screening of the in silico predicted and 

other potential targets of miR-21.  

MiR-21 has been found to induce the expression and the secretion of TGF-β2. TGF-

β2 has been identified as a downstream, indirect target of miR-21. 

Indeed, after neutralizing TGF-β2 in our differentiation system, miR-21 induction of 

EC marker expression was abolished. This data indicates that the TGF-β2 pathway is 

required for miR-21 inducing iPSC differentiation into ECs.  

The expression of TGF-β2 and its receptors TGF-βRIII and II has been shown to be 

strongly increased during VEGF induced iPSC differentiation into ECs, in particular 

after 5 and 7 days. These results demonstrate that TGF-β2 plays a role in the iPSC 

differentiation process. 

Furthermore, TGF-β2 treatment of iPSCs for 7 days induced the expression of EC 

markers at a gene and protein expression level, whereas it did not affect SMC marker 

expression. This data indicates that TGF-β2 regulation of iPSC differentiation acts 

specifically towards the EC lineage. In addition, treating iPSCs with TGF-β2 for 7 

days promoted the organization of the cells into tubular structures on Matrigel in 

vitro. 

To further confirm the importance of the TGF-β2 pathway in the EC differentiation 

of iPSCs, we inhibited SMAD3, a downstream effector of TGF-β2 and we analyzed 

the EC marker expression. Inhibition of SMAD3 not only repressed the baseline 

level of VE-cadherin, but it also abolished the induction of this marker observed 

after TGF-β2 treatment in the control cells. 

Finally, ELISAs performed on iPSCs treated for 7 days with TGF-β2 showed an 

induction of VEGF secretion from the cells. Furthermore, neutralization of VEGF 

secretion from the differentiation system repressed the TGF-β2-dependent increase 

in EC marker expression. These data might indicate that TGF-β2 indirectly regulates 

iPSC differentiation through stimulation of VEGF secretion.  
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3.4 IDENTIFICATION OF THE MOLECULAR 

TARGETS OF miRNA-21: MiR-21 TARGETS THE 

PTEN/AKT PATHWAY, WHICH REGULATES 

iPSC DIFFERENTIATION INTO ECs 

 

3.4.1 MiR-21 targets the PTEN/AKT pathway  

 

3.4.1.1 PTEN is a direct target of miR-21 

After identifying TGF-β2 as a necessary downstream functional target of miR-21 

regulated iPSC differentiation into ECs, we aimed to identify the direct target of 

miR-21. 

One of the in silico predicted targets for miR-21 is PTEN. Recent studies indicated 

that miR-21 inhibited the tumor suppressor PTEN by binding to its 3’ UTR (Meng, 

Henson et al. 2007). 

MiR-21 has recently been shown to induce cell proliferation, migration and invasion 

by modulating tumor suppressor gene PTEN in human hepatocellular cancer (Meng 

and Henson, Gastroenterology 2007). Furthermore, inhibition of PTEN by miR-21 

has been shown to play a role in inducing tumor angiogenesis through AKT and 

ERK activation and HIF-1α expression (Liu L Z et al). However, the role of PTEN in 

miR-21 inducing endothelial cell differentiation remains to be elucidated.  

In iPSCs pre-differentiated in the presence of VEGF, overexpression of miR-21 

decreased the protein level of PTEN, as shown by Western Blot analysis (Figure 65, 

A). By contrast, inhibition of miR-21 expression increased PTEN protein level 

(Figure 65, B).  
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Figure 65 Protein expression analysis of PTEN in iPSCs differentiated with VEGF after miR-21 

overexpression and inhibition 

iPSCs differentiated for 3 days on collagen IV and in differentiation medium containing VEGF were 

transfected with miR-21 precursor (Pre-21), inhibitor (LNA-21) and the negative controls of the miR-

21 precursor (Pre-Ctrl) and inhibitor (LNA-Ctrl). Protein expression level of PTEN (A and B) was 

assessed after 48h by Western Blot analysis. GAPDH was used as a loading control (C and D). 

 

In order to confirm PTEN as a direct target of miR-21, we used a luciferase reporter 

vector encoding the complete 3’UTR of PTEN (WT PTEN 3’UTR) and a control 

vector containing mismatches in the predicted miR-21 binding site (Mut PTEN 

3’UTR). Co-transfection of the WT PTEN 3’UTR plasmid and LNA-21 in iPSCs 

differentiating with VEGF resulted in an approximately 1.4 fold increase in 

luciferase activity (Figure 66, A). This data suggests that PTEN mRNA is a direct 

target of miR-21. Importantly, mutations in the sequence targeted by miR-21 in 

PTEN 3’UTR abolished the observed up-regulation of luciferase activity by miR-21 

(Figure 66, B). This result confirmed PTEN as a direct target of miR-21 and 

validated its binding to the predicted binding site.   
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Figure 66 Luciferase reporter assay confirms PTEN as a direct target for miR-21 

The wild type or mutated reporter plasmid pGL3 for PTEN 3’UTR (pGL3-PTEN-wt or pGL3-PTEN-

mut) was co-transfected with miR-21 inhibitor (LNA-21) and its control (LNA-Ctrl) in iPSCs 

differentiated for 3 days on collagen IV, in DM containing VEGF. 48h after transfection the luciferase 

activity was quantified. Results of relative luciferase activity are shown for pGL3-PTEN-wt (A) and 

pGL3-PTEN-mut (B). Renilla luciferase activity was used as a normalization control for transfection 

efficiency. The statistical analysis used is Student’s unpaired T-test. Data are shown as mean ±SEM 

of 3 individual experiments. *P < 0.05 vs. LNA-Ctrl. 

 

3.4.1.2 Phosphorylation of AKT is induced by miR-21  

PTEN is the antagonist of PI3K, which removes the 39 phosphate of 

Phosphatidylinositol 3-phosphate (PIP3), resulting in inhibition of the AKT 

signalling pathway (Jiang and Liu 2008). The PI3K/AKT signalling pathway plays a 

crucial role in many intracellular cascade events including tumor angiogenesis and 

tumor growth (Xia, Meng et al. 2006). Importantly, as already mentioned, the 

PI3K/AKT pathway has been shown to drive shear- and VEGF-induced stem cell 

differentiation into ECs (Zeng, Xiao et al. 2006). 

AKT (also known as protein kinase B), together with extracellular-signal regulated 

kinase (ERK), is one of the major signalling pathways regulating cell proliferation, 

survival and migration (Zhong, Chiles et al. 2000). 

Overexpression of miR-21 increased the phosphorylation of AKT at the Serine 473 

site (P-AKT), as compared to the negative control of precursor miRNA (Figure 67, 

A). On the other hand, inhibition of miR-21 reduced AKT phosphorylation, as 

compared to the negative control of an miRNA inhibitor (Figure 67, B). The total 

http://en.wikipedia.org/wiki/AKT
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level of AKT (AKT tot) was not significantly altered by miR-21 overexpression 

(Figure 67, C) or inhibition (Figure 67, D).  

 

 

Figure 67 Protein expression analysis of P-AKT and total AKT in iPSCs differentiated with 

VEGF, after miR-21 overexpression and inhibition 

iPSCs differentiated for 3 days on collagen IV and in differentiation medium containing VEGF were 

transfected with miR-21 precursor (Pre-21), inhibitor (LNA-21) and the negative controls of the miR-

21 precursor (Pre-Ctrl) and inhibitor (LNA-Ctrl). Protein expression level was assessed after 48h by 

Western Blot analysis of phosphorylated AKT (P-AKT, A and B) and total AKT (AKT tot, C and D). 

GAPDH was used as a loading control for Pre-miR (E) and LNA (F). 

 

Taken together, these data show that miR-21 inhibited PTEN expression, which in 

turn increased AKT phosphorylation. 
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3.4.2 The PTEN/AKT pathway regulates iPSC differentiation into 

ECs 

 

3.4.2.1 PTEN inhibition leads to AKT activation in the VEGF-induced iPSC 

differentiation 

We then aimed to assess whether PTEN inhibition is required for the activation of 

AKT during the VEGF-induced iPSC differentiation process. 

PTEN shares the same active centre, the CX5R motif, with protein tyrosine 

phosphatases (PTPases) (Li, Ping et al. 2012); therefore, we inhibited PTEN using 

the chemical inhibitor bisperoxovanadium (bpV), a well-established PTPase 

inhibitor. BpV has been shown to target the phosphatidylinositol 3-phosphatase 

active site of PTEN (Schmid, Byrne et al. 2004); testing several different compounds 

in vitro, Scmid et al. showed that bpVs with polar N,O ligands had a strong 

preference towards the active site of PTEN, while bpVs with the neutral N,N ligands 

seemed to be more prone to target both PTPases and PTEN, although with distinct 

affinities. They concluded that all bpVs inhibit PTEN with 10- to 100-fold lower 

concentrations than PTPases (Bauters, Kumarswamy et al.). Although PTEN  shows 

dual phosphatase activity, dephosphorylating both protein and lipid substrates, it has 

a higher specificity towards 3-phosphorylated phosphoinositides (PI) such as 

PtdIns(3)P, PtdIns(3,4)P2 and PtdIns(3,4,5)P3. In the above mentioned study of 

Schmid et al., after treatment with bpVs, the loss of PTEN activity has been 

monitored with an increase of PtdIns (3,4,5)P3 levels and therefore with a dose-

dependent increase of Ser473 phosphorylation of AKT, a well characterised 

downstream target of PTEN-dependent signalling (Bauters, Kumarswamy et al.). 

After 5 days of differentiation, iPSCs were starved for 4h and then treated with 5µM 

PTEN inhibitor for 30min, 2h and 24h and then harvested. Phosphorylation of AKT 

at the Ser-473 was increased after 30min and 24h of PTEN inhibition, as compared 

to the cells treated with DMSO as a control (Ctrl) (Figure 68, A). The protein level 

of total AKT (AKT tot) was not altered by PTEN inhibition (Figure 68, B).  
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Figure 68 Protein expression analysis of P-AKT, total AKT and PTEN in iPSCs differentiated 

with VEGF, after PTEN chemical inhibition 

iPSCs were seeded on Collagen IV, in DM containing VEGF 50ng/ml up to day 5 when the medium 

was removed and refreshed with serum free alpha MEM for 4h. 5µM PTEN inhibitor was then added 

for 24h, 2h and 30’(minutes), after which time the cells were harvested. Cells were treated with 

DMSO for 2h as a control (Ctrl). Protein expression of phospho-Ser-473 AKT (P-AKT, A) and total 

AKT (AKT tot, B) was analyzed by Western Blot. GAPDH was used as a loading control (C). 

 

These data indicate that during the VEGF-induced iPSC differentiation process, 

inhibition of PTEN increases the AKT phosphorylation and its consequent 

activation.  

 

3.4.2.2 PTEN downregulation increases the EC marker expression in 

differentiating iPSCs 

After demonstrating that PTEN inhibition is required for AKT activation during the 

VEGF-induced iPSC differentiation, we aimed to clarify whether the PTEN/AKT 

pathway is essential for the EC differentiation of iPSCs. 

 

Since we found that prolonged exposure of iPSCs to bpV strongly diminished cell 

survival and in order to establish a stable knockdown of PTEN, we used specific 

shRNAs to shutdown its expression. We then assessed the effect of the knockdown 

on EC marker expression. 
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iPSCs were differentiated for 3 days on collagen IV and in DM supplemented with 

50ng/ml VEGF and then infected with lentiviruses expressing shRNA specific for 

PTEN (shPTEN) or non targeting shRNAs (shNT), as a control. 48h later, the cells 

were harvested to analyze the gene expression level of PTEN and of the EC markers.  

 

Q-PCR results showed a significant and efficient repression of PTEN gene 

expression in iPSCs infected with shPTEN, as compared to cells infected with shNT 

(Figure 69). 

 

 

Figure 69 PTEN knockdown using lentiviral-mediated shRNA expression 

After 3 days of differentiation on collagen IV and in DM containing 50ng/ml VEGF, iPSCs were 

infected with shRNA specific for PTEN (shPTEN) or non targeting shRNAs (shNT), as a control. The 

gene expression level of PTEN was assessed 48h later by real time-PCR. The statistical analysis used 

is Student’s unpaired T-test. Data are presented as mean ±SEM of 3 individual experiments. ***P < 

0.001 vs. iPSCs infected with non targeting shRNA (shNT). 

 

After confirming the efficiency of the shRNA knockdown of PTEN, we analyzed the 

expression of the EC markers after shPTEN infection. Real time-PCR analysis 
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showed a 1.5-fold increase in the expression of VE-cadherin (VE-cad, Figure 70, A) 

and Flk1 (Figure 70, B) after shPTEN infection, as compared to shNT infection. 

 

Figure 70 Knockdown of PTEN induces EC marker upregulation in differentiating iPSCs 

iPSCs were differentiated for 3 days on collagen IV, in DM supplemented with 50ng/ml VEGF and 

then infected with shRNA specific for PTEN (shPTEN) or non targeting shRNAs (NT), as a control. 

Real time-PCR was performed 48h later to analyze the gene expression level of the EC markers VE-

cad (A) and Flk1 (B). The statistical analysis used is Student’s unpaired T-test. Data are shown as 

mean ±SEM of 3 individual experiments. ***P < 0.05 vs. iPSCs infected with non targeting shRNA 

(shNT). 

 

We can conclude that during the VEGF-induced iPSC differentiation, inhibition of 

PTEN with specific shRNAs is able to induce EC marker expression in 

differentiating iPSCs.  
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3.4.3 Conclusions  

In summary, in the last part of the work we partially elucidated the signalling 

pathways through which miR-21 induces iPSC differentiation into ECs. 

We firstly confirmed PTEN as a direct target of miR-21 and validated its binding to 

the predicted binding site.   

Secondly, we showed that miR-21 regulates the AKT pathway by targeting PTEN 

and thus inducing AKT phosphorylation. 

Finally, we assessed the requirement of the PTEN/AKT pathway in the VEGF-

induced EC differentiation of iPSCs. 

Indeed, during the differentiation of iPSCs, shutdown of PTEN with specific 

shRNAs increased EC marker expression, thereby indicating that PTEN inhibition is 

essential to induce iPSC differentiation towards EC lineage. 
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CHAPTER 4. DISCUSSION 
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4.1 ROLE OF VEGF AND SHEAR STRESS IN 

STEM CELL DIFFERENTIATION INTO ECs 

 

The generation of an efficient, patient-specific vessel graft requires the identification 

of a suitable source of endothelial cells that can be derived from the patient in 

adequate number for clinical use. In this work we focused on the differentiation of 

iPSCs to ECs. Somatic cells from patients have the potential to be reprogrammed to 

iPSCs, which can be expanded in an undifferentiated state, or to be subjected to 

lineage specific differentiation in response to a stimulus. 

It is very important to establish an efficient and reproducible protocol of 

differentiation. We started from a protocol recently published from our lab to induce 

ESC differentiation towards ECs based on the use of collagen IV, VEGF and shear 

stress (Zeng, Xiao et al. 2006). Aiming to adapt this protocol to iPSCs 

differentiation, we tested many combinations, using different VEGF concentrations 

and time points. We also tried a combination of VEGF and shear stress firstly on 

ESCs, and then on iPSCs. After plating iPSCs on collagen IV, in DM containing 

VEGF, we first observed a different morphology as compared to the undifferentiated 

iPSCs on gelatine: the differentiating cells adhered to the plate and became flat and 

elongated, while the undifferentiated iPSCs appeared to cluster in round three-

dimensional colonies. 

We then aimed to find an optimal dose of VEGF able to obtain the best response of 

ECs differentiation generated by iPSCs. Zeng et al. stimulated Sca-1
+
 vascular 

progenitor cells derived from ESC with medium containing 10ng/ml VEGF. On the 

other hand, in the work of Narazaki et al., iPSC and ESC-derived Flk1
+
 progenitor 

cells were stimulated with 100ng/ml VEGF (Narazaki, Uosaki et al. 2008). In our 

study we aimed to test several concentrations ranging between these two extremes. 

Furthermore, we used we used undifferentiated iPSCs without pre-differentiating the 

cells or selecting for a specific population. The results of a dose-response curve 

experiment showed that concentrations of 20 and 50 ng/ml of VEGF were able to 

induce a robust upregulation of the EC markers VE-cadherin, Flk1 and vWF. 

Interestingly, immunostaining experiments of the differentiated cells revealed a 

homogeneous expression of the endothelial markers, showing a remarkably high 
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differentiation rate. Indeed, the cellular distribution of endothelial-specific proteins 

observed by immunostaining confirmed the presence of a clear pattern of VE-

cadherin expression at the cell junctions and eNOS and vWF at the 

cytoplasm/membrane of the cells. Therefore we confirmed that we had devised a 

protocol that bypassed the need of selecting for a specific marker. 

We also investigated the timeframe of differentiation by analysing the EC marker 

expression in cells treated with 20 and 50ng/ml of VEGF at different time points. 

Previously published protocols indicate that the peak of differentiation starts after 3-

day culture of iPSC–derived Flk1
+
 cells using 100 ng/ml VEGF (Narazaki, Uosaki et 

al. 2008), or after 7-day culture of ESC-derived Sca-1
+
 cells using 10 ng/ml VEGF 

(Zeng, Xiao et al. 2006). 

Our experiments showed that the highest upregulation of the EC markers (VE-

cadherin, Flk1 and vWF) was after 7 days. However, using 50ng/ml of VEGF for 7 

days, we observed an increased expression of the late EC marker VE-cad (20 fold), 

as compared to 20ng/ml VEGF (14 fold). Furthermore, VE-cad and vWF expression 

started at an early time, around day 3, as compared to the lower dose. 

In summary, we established that the treatment of iPSCs with increasing 

concentrations of VEGF had an effect on endothelial differentiation up to 50ng/ml, 

while higher concentrations did not achieve a better result. Furthermore, 50ng/ml 

achieved a quicker pattern of differentiation as compared to 20ng/ml and was 

therefore chosen for further experiments. Importantly, compared to previously 

described differentiation protocols, our protocol shows a higher scale of EC marker 

induction, up to a 100 fold increase in Flk1 expression, thus indicating better 

differentiation efficiency than existing protocols. For instance, Narazaki et al. 

showed that, in Flk1
+
 progenitor cells, the effect of VEGF only led to a 20 fold 

increase in  EC marker expression (Narazaki, Uosaki et al. 2008). 

In conclusion, our protocol allows the direct and efficient EC differentiation from 

undifferentiated iPSCs in a relative short time and at a highest level, as compared to 

the previously published protocols. 

In addition to phenotypical characterization, the functionality of the obtained 

endothelial cells was investigated using an in vitro angiogenesis assay. The 
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phenomenon that ECs rapidly form capillary-like structures in vitro when plated on a 

reconstituted basement membrane extracellular matrix, such as Matrigel, was 

demonstrated almost 20 years ago (Grant, Kinsella et al. 1995). This formation of 

capillary-like structures is specific to ECs and is used to assess EC functionality. 

Cells differentiated using our protocol showed the ability to organize into tube-like 

structures, confirming their endothelial nature. 

In conclusion, using such an optimized differentiation protocol for iPSCs we 

characterized the differentiated cells and established that they were highly positive 

for main endothelial markers at gene and protein level and resemble endothelial cells 

in their morphology and their ability to organise into tubular structures in vitro.  

A separate section of the work was dedicated to a set of experiments involving the 

use of shear stress. Shear stress has been shown by our group and others to play an 

important role in stem cell differentiation, in particular in the differentiation of the 

progenitor cell population Sca1
+
 (Zeng, Xiao et al. 2006). We first performed 

preliminary experiments on a better established population of progenitor cells, ckit
+
, 

which has been characterized in our laboratory and has been demonstrated to 

represent a novel vascular progenitor cell population.  

In the study of Yamamoto et al., ESC-derived Flk1
+
 progenitors exposed to shear 

stress (1.5 to 10 dynes/cm
2
) showed a significant induction in EC marker expression 

(Flk1, Flt-1, PECAM-1 and VE-cadherin) at both protein and mRNA levels, and had 

an increased tube formation capacity (Yamamoto, Sokabe et al. 2005).  

Furthermore, data from our group showed that exposing Sca1
+
 progenitor cells to 

laminar shear stress (12 dynes/cm
2
) for 24h increased their proliferation and 

differentiation. Sheared Sca1
+ 

cells displayed increased expression levels of Flk1, 

eNOS and VCAM-1, and showed improved tube-like structure formation on 

Matrigel (Xiao, Zeng et al. 2006). In the work of Xiao et al., the predifferentiated 

cells were exposed to a laminar flow generated by a peristaltic pump; the shear stress 

obtained (12 dyne/cm
2
)
 
was determined by the flow rate and the channel dimensions, 

and was comparable with the physiological range in human major arteries. 

Additionally, in another work recently conducted by our group, ckit
+
/Sca

-
 progenitor 

cells were exposed to short-term shear stress using an orbital shaker, and showed an 

increased EC marker expression (in revision, Campagnolo et al.).  
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Following the protocol described in the study of Xiao et al., we indeed differentiated 

ESCs on collagen IV and in DM for 4 days to obtain a mixed population of 

progenitor cells. Subsequently, we decided to isolate ckit
+
 progenitor cells, rather 

than Sca-1
+
, using immunomagnetic beads and to differentiate this progenitor 

population for a further 3 days in the same conditions. Shear stress was then applied, 

using an orbital shaker, for either 24h or 48h, after which cells were collected and 

endothelial marker expression analyzed. We could only observe some degree of 

upregulation of the EC markers after 24h of shear stress. 

Interestingly, previous data from our group demonstrated that shear stress and VEGF 

share a similar activation pathway (the Flk1–PI3K–AKT–HDAC3–p53–p21 

pathway) in the induction of EC differentiation of Sca1
+
 derived from ESCs  (Xiao, 

Zeng et al. 2006). We decided to combine shear stress stimulation with VEGF 

treatment, in order to increase the rate of EC differentiation. Results showed an 

enhanced expression of EC markers such as CD31, VE-cad, Flk1 and eNOS  after 24 

or 48h (about 2 folds), as compared to each stimuli applied alone. However the 

results were often quite inconsistent and poorly reproducible. 

After optimising the conditions for this differentiation protocol on ckit
+
 progenitor 

cells, we then applied the shear stress and VEGF treatment to iPSCs for 48h. 

Synergistic application of VEGF and shear stress to iPSCs has been never shown so 

far in the literature. We observed an approximately 3 fold induction in EC marker 

expression. Although it was possible to appreciate some effect of the synergistic 

action of shear stress and VEGF on the iPSC differentiation, we decided to focus 

only on the VEGF stimuli to study the mechanisms underlying iPSC differentiation. 

The shear stress application system, using an orbital shaker platform, presents too 

many limitations, which will be better explained in the following paragraph. 
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4.2 CHARACTERIZATION OF miRNA PROFILE 

DURING VEGF- AND SHEAR STRESS- INDUCED 

iPSC DIFFERENTIATION: MiRNA-21 

REGULATES VEGF-INDUCED iPSC 

DIFFERENTIATION INTO ECs 

 

The main aim in this thesis was to establish the molecular mechanisms driving the 

differentiation of iPSCs to ECs. . MiRNAs are small non-coding RNAs that have 

been shown the potential to regulate complex processes by targeting multiple 

proteins at the same time. For this reason we decided to investigate the miRNA 

signature of differentiated and undifferentiated iPSCs using a miRNA array. 

Previous work on embryonic stem cells has shown that pluripotent cells and cells 

differentiated to vascular ECs express different pools of miRNAs. In particular, 

some of the miRNAs found to be highly overexpressed by ESC-derived EC were 

previously found to be involved in angiogenesis (Kane, Meloni et al. 2010). 

To our knowledge, there are no studies investigating the miRNA profile during 

vascular differentiation of iPSCs though recent publications have characterized the 

miRNA profile of iPSCs during osteogenic differentiation (Okamoto, Matsumi et al. 

2012). We performed a miRNA array on iPSCs differentiated for 3 days with VEGF 

and in undifferentiated iPSCs, in order to compare their miRNA profiles. We found a 

pool of differentially expressed miRNAs and selected some of the most consistently 

up or downregulated miRNAs to validate their expression over a 7 day-long 

differentiation toward the endothelial lineage.  

We validated a total of 5 miRNAs, including miR-218, miR-133a, miR-29b, miR-

20b and miR-21.  Among the validated miRNAs, miR-218, showed an induction of 

up to 25 fold after 7 days of VEGF-induced differentiation. This miRNA has been 

mainly studied as a tumour suppressor in different types of cancer (Yamasaki, Seki 

et al. , Li, Ping et al. 2012). MiR-133a showed an upregulation of approximately 50 

fold after 7 days of differentiation; miR-133a has been shown to be mainly involved 

in cardiac and muscle remodelling and is a known biomarker expressed after 

myocardial infarction (Bauters, Kumarswamy et al.). MiR-133a was also shown to 
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be involved in myocardial and liver fibrosis (Castoldi, di Gioia et al. 2012, 

Roderburg, Luedde et al. 2013) and to promote cardiogenic differentiation (Lee, 

Ham et al. 2013). Another miRNA showing a strong induction, of approximately 35 

fold at day 5 of differentiation, was miR-29b. This miRNA plays a role in osteogenic 

differentiation (Trompeter, Dreesen et al. 2013) and acts as a tumour suppressor 

(Melo and Kalluri 2013), in particular repressing tumour angiogenesis, invasion and 

metastasis (Fang, Zhou et al. 2011). Additionally, miR-20b was found to be 

upregulated by 6 fold at day 3 of differentiation. Previous publications have shown 

that miR-20b has antiangiogenic properties  (Wu, Yang et al. 2009) being 

downregulated in hypoxic conditions and decreasing the expression of VEGF in 

carcinoma cell lines (Hua, Lv et al. 2006). Finally miR-21 was found to be 

upregulated by approximately 6 and 8 fold after 5 and 7 days, respectively. MiR-21 

has been shown to increase tumour progression in several types of tumours by 

targeting and inhibiting tumour suppression proteins such as phosphatase and tensin 

homolog (PTEN) (Meng, Henson et al. 2007). More relevant to our research, miR-21 

has been previously shown to induce tumour angiogenesis through the AKT and 

ERK pathway activation, increasing the expression of VEGF and HIF-1α (Liu, Li et 

al. 2011). Conversely, it has also been reported to exhibit antiangiogenic functions, 

by targeting RhoB in mature ECs (Sabatel, Malvaux et al. 2011). This double aspect 

of miR-21 in the context of angiogenesis led us to hypothesise a possible role in EC 

differentiation.  

After validating the expression of the above mentioned miRNAs, we decided to 

select the two most interesting candidates, in order to study their involvement in the 

mechanisms underlying iPSC differentiation into ECs. Although miRNAs 133a, 29b 

and 218 were highly upregulated during iPSC differentiation, we decided to focus on 

miRNAs which had previously been shown to be related to angiogenic processes, 

such as miR-20b and miR-21. Despite some studies relating these two miRNAs with 

tumour angiogenesis and mature EC biology, no studies have investigated their 

involvement in the VEGF-induced differentiation of iPSCs.  

Our initial aim was to establish a miRNA link between the differentiation pathway 

induced by VEGF and the pathway induced by shear stress. We therefore ran a 

parallel experiment of miRNA array to compare cells grown in static and shear stress 

conditions. Interestingly, miR-218, one of the most consistently overexpressed 
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miRNAs was also upregulated in the VEGF array, although at a lower level. We 

attempted to confirm this result by analysing its expression with real time PCR, but 

we could not validate it. We also attempted to validate other interesting miRNAs that 

emerged from the array, but the high variability and poor reproducibility of the 

conditions invalidated the results. 

The shear stress model that we used is an orbital shaker platform; in this model, the 

shear stress cannot be uniformly applied to the cells across the plate and the entity of 

the shear is difficult to define mathematically. It has been shown that  shear stress 

generated by an orbital shaker is low and oscillatory at the centre of the well, while 

at the periphery of the well it is directional and laminar as in atheroprotected 

physiological conditions (Chakraborty, Chakraborty et al. 2012). Therefore, in order 

to overcome this issue we systematically removed the cells in the centre of the well 

before collecting our samples. This expedient did not succeed in eliminating the 

problem.  This may be due to variability within the area we defined as the periphery. 

In a study based on the analysis of computational fluid dynamics (CFD), time and 

location dependent wall shear stress (WSS) generated by an orbital shaker was 

determined. WSS was shown to be uniform (0–1 dyne/cm
2
) across the bottom of the 

dish, when low orbital speed (50 rpm) was applied; however, using higher orbital 

speeds (100 and 150 rpm), the WSS remained uniform near the centre, but varied 

significantly (0–9 dyne/cm
2
) near the side walls of the dish (Dardik, Chen et al. 

2005). This variation can be thought of as similar to the pulsatile nature of shear 

stress experienced by native ECs. 

We applied an orbital speed of 120 rpm, which corresponds to a peak shear of 8 

dyne/cm
2
 (Dardik, Chen et al. 2005), but this level of shear stress was not necessarily 

sensed in a homogeneous pattern by the cells across the surface. Differentiating 

iPSCs at day 3 do not form a uniform monolayer, in contrast to the appearance of 

mature ECs, and this might prevent the cells from transmitting shear sensing 

mechanical signals to adjacent cells.  

These factors should be considered in the interpretation of the results of experiments 

performed with shear stress, which were not always consistent and reproducible. 

This may also explain why we were not able to validate the expression of the 

miRNAs found in the array performed with shear stress. For these reasons, we 



199 

 

decided to focus on the VEGF differentiation system, in order to study the 

involvement of miRNA candidates in the EC differentiation of iPSCs.  

In conclusion, we performed the first miRNA array during iPSC differentiation 

towards an EC lineage. Our miRNA characterization may open future studies: for 

instance, the role of the other validated miRNAs.  Study of these miRNAs was 

beyond the scope of this thesis but the role of these could be analyzed in future, thus 

elucidating new molecular pathways. 

As mentioned previously, we chose to investigate the involvement of miR-20b and 

miR-21 in the VEGF-induced iPSC differentiation towards ECs. We first altered the 

levels of miR-20b and miR-21 in iPSCs differentiated with VEGF for three days. 

The efficiency of transfection with miRNA precursor (Pre20b/21) and inhibitor 

(LNA-20b/21) was significantly high, as showed by the relative increase and 

decrease in the mature miRNA expression. However, the gene expression of the EC 

markers was not affected by miR-20b overexpression and inhibition. On the other 

hand, when the cells were differentiated for 3 days in presence of VEGF and 

transfected with Pre-21, we could observe an induction of approximately 5 and 3 

fold in the gene expression level of VE-cadherin and Flk1 respectively; however, 

miR-21 inhibition did not affect the gene expression of these markers. At a protein 

expression level, we could confirm an increase in EC markers after transfecting 

iPSCs with Pre-21; importantly, we could also observe a significant decrease in the 

protein expression of VE-cadherin and flk1 after inhibiting miR-21. The differences 

in the results of miR-21 inhibition observed at a gene and protein expression levels 

could be explained in two ways; firstly, the effect of the inhibitor may depend on the 

miRNA expression level at the time of transfection: if the miRNA is not expressed 

by the cells at a significant level, the LNA cannot efficiently bind to and inhibit the 

endogenous molecules of miRNA. Secondly, miRNA regulation is known to occur at 

a post-trascriptional level, and this may explain why we could see the miR-21 

inhibition effect on the EC markers at a protein expression level only. In order to 

understand wether VEGF was required in this miR-21 regulation of EC marker 

expression, we cultured the cells in the absence of VEGF and we performed the 

same experiment. Importantly, miR-21 was not able to affect the expression of the 

EC markers at a gene expression level. These data indicate the requirement of VEGF 

stimulation for the miR-21 induced EC marker induction. 
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At this point, in order to verify that miR-21 regulation of iPSC differentiation 

occurred specifically towards the endothelial lineage, we analyzed the expression of 

SMC and cardiac markers, which, like ECs, are derived from the mesoderm and 

additionally, the expression of endoderm and ectoderm markers. Importantly, we 

confirmed that the expression of all these markers was not affected by miR-21 

overexpression and inhibition. We therefore proved that miR-21 specifically 

regulates iPSC differentiation towards ECs and not towards any other cell lineage. 

The specificity of miR-21 regulation towards EC differentiation is a strong point in 

this work and will allow us to study the mechanisms involved in this process. 

We then assessed the miR-21 regulation on iPSC differentiation into functional ECs, 

using an angiogenesis assay in vitro. Overexpression of miR-21 in iPSCs 

differentiated with VEGF for four days induced the formation of tube-like structures. 

Accordingly, miR-21 inhibition decreased the tube formation ability on Matigel; 

these results further confirmed the effect of miRNA inhibition at a post-trascriptional 

level.  

We also aimed to study the effect of miR-21 regulation using an in vivo angiogenesis 

assay. The results revealed a significant induction in the density of CD31
+
 and VE-

cadherin
+ 

capillaries in the plugs seeded with miR-21 transfected cells, as compared 

to the control cells. Similarly to the results obtained in vitro, inhibition of miR-21 led 

to a decreased density of capillaries positive for the EC markers CD31 and VE-cad, 

as compared to LNA-Ctrl.  

In vivo assays that mimic human angiogenesis has been previously reported, for 

instance in the work of Skovseth et al., where native HUVECs are suspended in 

Matrigel, injected into immunodeficient mice, and develop into mature, functional 

vessels able to vascularize the Matrigel plug within 30 days (Skovseth, Küchler et al. 

2007). 

Moreover, in the study of Liu et al., human prostate cancer cells transfected with 

Pre-21, LNA-21 and the relative negative controls were resuspended in serum-free 

medium, and mixed with Matrigel; aliquots of the different mixture were then 

applied onto the chicken chorioallantoic membrane of 9-day-old embryos to assess 

tumour angiogenesis. The number of branches of microvessels were increased by 

miR-21 overexpression and viceversa decreased by miR-21 inhibition, indicating a 

http://link.springer.com/search?facet-author=%22Dag+K.+Skovseth%22
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pro-angiogenic function of miR-21 (Liu, Li et al. 2011). This study indeed shows a 

direct role of miR-21 in inducing angiogenesis, thus supporting our findings.  

Our results of the in vivo angiogenesis assay suggested a potential use of miR-21 

inhibitor in the development of new antiangiogenesis therapies; for instance this may 

be used for the treatment of diseases like cancer, where angiogenesis plays an 

important role.   

Since in the in vivo angiogenesis assay we did not label the miR-21 transfected cells 

before the injection, we cannot exclude that the capillary structures observed in the 

matrigel plugs were also composed by the host ECs, and not only by the miR-21-

induced ECs. However, since the previously performed in vitro Matrigel assay 

showed that cells transfected with miR-21 were able to organize tube like structures, 

probably in the Matrigel plugs the same cells are able to promote the angiogenic 

process in vivo. There is a possibility that host cells are recruited by miR-21 

transfected cells and integrate with them to form new capillaries, following the 

inflammation process induced by Matrigel plug injection. In both the cases, either if 

the effect on the capillary formation is due to the injected cells only or to their 

interaction with the host cells, in vivo angiogenesis is promoted by miR-21 

transfected cells.  

In conclusion, we showed for the first time that miR-21 specifically regulates the 

VEGF-induced differentiation of iPSCs into functional ECs and that VEGF 

stimulation is required in this process. Interestingly, a link between miR-21 and 

VEGF expression has already been established in the work of Liu et al., where miR-

21 has been reported to induce tumour angiogenesis through AKT and ERK pathway 

activation, increasing the expression of VEGF and hypoxia-inducible factor 1-alpha 

(HIF-1α) (Liu, Li et al. 2011). The possibility of a mutual regulation between the 

VEGF and miR-21 pathways will be examined in the following section (4.3). 
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4.3 IDENTIFICATION OF THE MOLECULAR 

TARGETS OF MiRNA-21: TGF-β2 PATHWAY IS 

A DOWNSTREAM TARGET OF MiR-21 AND 

DRIVES iPSC DIFFERENTIATION INTO ECs 

 

At this point we aimed to elucidate the molecular mechanisms that occur during 

miR-21 induced differentiation of iPSCs. We started by identifying the molecular 

targets of miR-21 in order to elucidate the signalling pathways involved in the 

differentiation process. This was a difficult process as miR-21 has been shown to 

target multiple genes, which have not yet been shown to have a role in stem cell 

differentiation towards the EC lineage. 

In order to start screening the molecular targets of miR-21 we used an miRNA target 

database (miRGEN), based on the intersection of four different prediction 

algorithms. From the lists of in silico predicted targets, we mainly focused on genes 

that may be involved in the angiogenic process. Among those, we focused on genes 

known to regulate EC functions and vessel growth, such as TGF-βRII, regulator of 

ERK activation Sprouty 1 (SPRY1), RhoGTPase RhoB and Sox7, and genes 

encoding for regulators of cell migration such as vinculin (Vcl). 

We also decided to include genes of the Wnt and the HIF1α/VEGF signalling 

pathways, which are known regulators of EC differentiation during embryogenesis 

and tumour growth (Logan and Nusse 2004, Dejana 2010). Furthermore, miR-21 is 

known to regulate HIF1α, and induce tumour angiogenesis, through stimulation of 

VEGF gene expression (Kong, Kong et al. 2012). Interestingly, we found that 

transfection with miR-21 inhibitor was able to reduce VEGF gene expression.  These 

results highlighted the connection between miR-21 and VEGF by showing that while 

miR-21 is regulated during VEGF-dependent differentiation, it is also important in 

the regulation of VEGF, since cells lacking miR-21expressed a reduced amount of 

VEGF mRNA. 

Despite the lack of variation in the other genes identified through miRGEN, we 

decided to expand our investigation stemming from the two predicted members of 

the TGF-β family, TGF-βRII and transforming TGF-βI, to the rest of the components 
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of the pathway. TGF-β is a multifunctional cytokine which regulates proliferation, 

migration, differentiation and survival of many different cell types (Munger, Harpel 

et al. 1997). In mammals there are three known isoforms, TGF-β1, TGF-β2 and 

TGF-β3, with distinct and shared functions. Deletions of different members of the 

TGF-β family, have been shown to cause vascular remodelling defect and absence of 

mural cell formation, leading to embryonic lethality (Pardali and Ten Dijke 2009), 

and mutations of other components of this family have been reported to lead to 

severe vascular disorders (Bertolino, Deckers et al. 2005, Lebrin, Deckers et al. 

2005).  

Interestingly, TGF-β2 was found to be upregulated by miR-21 overexpression. 

Importantly, this observation was matched by increased levels of secreted protein, 

showing that miR-21 was not only able to influence TGF-β2 at a transcriptional 

level, but also that this resulted in an increase of the functional protein. Furthermore, 

protein levels in the supernatant were reduced by the treatment with miR-21 

inhibitor, despite no apparent change in RNA levels. This inhibitory effect on TGF-

β2 protein secretion only might be due to the fact that miRNAs, as stated earlier, are 

known to act at a postranscriptional level. 

To confirm TGF-β2 as an essential downstream molecule mediating miR-21-

inducing EC differentiation, Pre-21-transfected iPSCs were treated with TGFβ-2 

neutralizing antibody. TGF-β2 neutralization inhibited the miR-21-induced EC 

marker induction, as compared to IgG control, at both gene and protein expression 

level. This experiment was relevant to assess for the first time the existence of a link 

between miR-21 and TGF-β2 during iPSCs differentiation, thus attesting that TGF-

β2 secretion is an essential step in the miR-21 induced EC differentiation. 

We therefore aimed to analyze TGF-β2 expression during the VEGF-induced iPSC 

differentiation. Our results showed a strong upregulation of TGF-β2 gene 

expression, up to 200 fold after 7 days of differentiation, while the expression of 

TGF-β1 was much lower, with a peak of 10 fold induction after 7 days. Interestingly 

and supporting our previous results, TGF-β2 expression appeared to be concomitant 

with miR-21 expression, after 5 and 7 days of VEGF-induced iPSC differentiation; 

these data further support the connection between miR-21 and TGF-β2 in the iPSC 

differentiation process. Next, we analyzed the expression of receptors of TGF-β 
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signalling during VEGF-induced iPSC differentiation. Consistently with the 

expression of the ligands, we found a strong upregulation of TGF-βRII and III. 

Although a trend was visible, TGF-βRI gene was upregulated to a lesser extent and 

not always consistently. TGF-βRIII was the most highly upregulated, reaching 200 

fold induction after 7 days. This result may be explained by considering that TGF-

β2, which has a low affinity for TGF-βRII, requires the accessory receptor TGF-

βRIII or β-glycan, for high-affinity interaction with the heteromeric-signalling 

receptor complex; binding of TGF-β2 to TGF-βRII then leads to activation of TGF-

βRI for the signal transduction (Goumans, Liu et al. 2009).  

After indentifying TGF-β2 as an important downstream effector of miR-21, and after 

showing its expression during VEGF-induced iPSC differentiation, we aimed to 

clarify the role of TGF-β2 in this process. We therefore treated iPSCs for up to 7 

days with TGF-β2 to analyze the expression of EC markers. Results showed an 

upregulation of approximately 2.3 and 2 fold in the gene expression of VE-cadherin 

and Flk1 respectively. Importantly, after TGF-β2 treatment, we could not see any 

effect on the SMC markers. In contrast, it has previously been demonstrated that 

TGF-β induces ESC differentiation into SMCs via Notch or SMAD2 and SMAD3 

signalling (Yamashita, Takano et al. 2005, Kurpinski, Lam et al. 2010); additionally, 

in a neural crest stem cell line Chen et al. showed a TGF-β induction of SMC 

markers and phenotype (Chen and Lechleider 2004). Here, we report for the first 

time that TGF-β2 treatment is able to specifically induce iPSC differentiation 

towards EC lineage, without affecting SMC marker expression.  

From the ELISA results iPSCs secretion of TGF-β2 appeared to be in the scale of 

pg/ml, indeed at a low concentration level; however, since iPSCs continuously 

secrete TGF-β2, which probably exerts a paracrine action on neighbouring cells, that 

concentration was enough to be effective in iPSC differentiation. However, in order 

to study the response of the cells to TGF-β2 treatment for a defined time of 7 days, 

we had to use a significantly higher dose of the cytokine; we chose 3ng/ml TGF-β2 

which has previously been shown to induce EMT in epithelial cells (Hatanaka, 

Koizumi et al. 2012).  

Importantly, results of protein expression analysis confirmed the induction of the EC 

markers observed at a transcriptional level. Moreover, TGF-β2 regulation of the 
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functional iPSC differentiation was attested by in vitro angiogenesis assay; TGF-β2 

treated cells showed a significantly increased tube formation capacity, as compared 

to untreated cells. Notably, so far there are no other studies reporting the role of 

TGF-β2 on stem cell functional differentiation towards ECs.  

It has previously been shown that the TGF-β family exerts its action on cells via 

specific intracellular transcription factors, such as RhoA/ROCK and SMAD. The 

ROCK pathway has been shown to play a negative role in stem cell differentiation, 

since its suppression promotes differentiation and expansion of ECs from ESC-

derived Flk1
+
 cells (Yamasaki, Seki et al.). On the other hand, in ECs TGF-β has 

been shown to bind to TGF-βRI, and to induce phosphorylation of SMAD2/3, 

thereby inhibiting proliferation, tube formation, and migration of ECs (Goumans, 

Valdimarsdottir et al. 2003). However, so far there are no studies reporting the role 

of SMAD3 in stem cell differentiation into ECs. Indeed, in order to clarify the 

molecular mechanisms through which TGF-β2 is able to drive iPSC differentiation 

into ECs, we decided to investigate the role of the TGF-β2/SMAD3 pathway in this 

process. We therefore treated iPSCs differentiated for 7 days in the presence or 

absence of TGF-β2, with a SMAD3 inhibitor. Q-PCR results showed that the 

SMAD3 inhibitor significantly abolished TGF-β2 induction of EC markers, as 

compared to untreated cells. These data confirm the importance of the TGF-

β2/SMAD3 pathway in the iPSC differentiation process. Interestingly, our results 

also showed that inhibition of SMAD3 significantly reduced the baseline expression 

level of VE-cadherin, in the absence of TGF-β2 stimulation; this result may be 

explained by considering that SMAD3 is at the centre of other molecular pathways 

and it is not only a TGF-β2 downstream effector. For instance activin, a member of 

the TGF-β superfamily, has been shown to share some biological activities with 

TGF-β and to signal through SMAD proteins, such as SMAD3 (Massagué and Chen 

2000). Moreover, it has been reported that SMAD2/3 is a downstream effector of 

Activin/Nodal signalling, which binds and directly controls the activity of the Nanog 

gene to mantain pluripotency in hESCs (Singh, Reynolds et al. 2012). Furthermore, 

studies conducted in EC-specific SMAD2/3 double KO (SMAD2/3KO) mice 

embryos, revealed hemorrhage leading to embryonic lethality around E12.5 and 

incomplete vascular maturation because of inadequate assembly of mural cells in the 

vasculature. In the vasculature of EC-SMAD2/3KO mice it is possible to observe 
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wide gaps between ECs and mural cells, because of the reduced expression of N-

cadherin and sphingosine-1-phosphate receptor-1 (S1PR1) in ECs. Indeed the 

SMAD2/3 signalling has been reported to be essential in ECs to keep the vascular 

integrity through regulating N-cadherin, VE-cadherin, and S1PR1 expressions (Itoh, 

Itoh et al. 2012). This last study could also explain why the baseline level of VE-

cadherin expression was affected after SMAD3 inhibition in our system. 

In conclusion, our results demonstrated that SMAD3 mediates the effect of TGF-β2 

on iPSC differentiation and for the first time highlighted the importance of the TGF-

β2/SMAD3 pathway in the differentiation of iPSCs into ECs.  

At this point, we aimed to elucidate the mechanisms behind the TGF-β2 induction of 

iPSC differentiation into ECs. Our results showed so far that miR-21 inhibition 

reduces VEGF gene expression, and that VEGF stimulation is required in the miR-

21 regulation of iPSC differentiation into ECs. We indeed hypothesized an indirect 

mechanism of VEGF secretion induced by TGF-β2 treatment. 

We therefore performed ELISAs in order to analyze the secretion of VEGF after 7 

days of treatment with TGF-β2. Our results showed a significant induction of 1.6 

folds in the secretion of VEGF after TGF-β2 treatment, as compared to untreated 

cells; this data indicates that TGF-β2 promotes a specific and functional 

differentiation of iPSCs into ECs through induction of VEGF secretion. Other 

studies previously conducted in different cellular contests showed that VEGF 

secretion can be induced by TGF-β2, thus supporting our findings. For instance, 

VEGF secretion has been shown to play an important role in retinal and choroidal 

neovascularisation; induction of VEGF secretion by TGF-β2 in human retinal 

pigment epithelium is mediated by MEK, p38, JNK, PI3K and NF-kappaB and by 

many other important signalling intermediates, such as PKC, PTK and ROS (Bian, 

Elner et al. 2007). Moreover, in the work of Ma et al. it has been reported that TGF-

β2 stimulation increases VEGF mRNA expression and secretion; both VEGF and 

TGF-β2 were in fact able to induce retinal pigment epithelium cell-mediated 

collagen gel contraction in vitro through upregulation of α-SMA expression (Ma, 

Zhang et al. 2012). 

To further confirm our hypothesis that VEGF secretion is required for TGF-β2 

induced iPSC differentiation into ECs, we treated iPSCs for 7 days with TGF-β2 in 
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the presence of VEGF neutralizing antibody or IgG as a control and we analyzed the 

expression of the EC markers. Western Blot results showed that treatment with 

VEGF blocking antibody reduced the TGF-β2-dependent increase of VE-cadherin, 

as compared to control cells. These results indeed strongly support our data from the 

ELISAs and indicate for the first time that VEGF secretion is required for the TGF-

β2 induced iPSC differentiation into ECs. Indeed, our data so far demonstrated that 

TGF-β2 expression and secretion were increased during the VEGF- and miR-21-

induced iPSC differentiation and vice versa VEGF secretion was induced by TGF-β2 

treatment; after neutralizing VEGF secretion, there was a decrease in the TGF-β2 

induction of the EC markers. Indeed, we could conclude that there is an evident link 

between the miR-21, TGF-β2 and VEGF pathways, which appears to be a mutual 

regulation.  

 

4.4 IDENTIFICATION OF THE MOLECULAR 

TARGETS OF miRNA-21: MiR-21 TARGETS THE 

PTEN/AKT PATHWAY, WHICH REGULATES 

iPSC DIFFERENTIATION INTO ECs 

In the last part of this work, after identifying TGF-β2 as an essential downstream 

functional target of the miR-21 regulated iPSC differentiation into ECs, we focused 

on the research of the direct target of miR-21. We also aimed to elucidate the 

molecular pathway underlying the miR-21 regulation of iPSC differentiation. 

One of the in silico predicted targets for miR-21 is PTEN. Recent studies indicated 

that miR-21 inhibited the tumour suppressor PTEN by binding to its 3’ UTR (Meng, 

Henson et al. 2007). Modulation of the tumour suppressor gene PTEN by miR-21 in 

human hepatocellular cancer has recently been shown to induce cell proliferation, 

migration and invasion (Meng and Henson, Gastroenterology 2007), and inhibition 

of PTEN by miR-21 has been reported to induce tumour angiogenesis through AKT 

and ERK activation and HIF-1α expression (Liu L Z et al). However, so far the role 

of PTEN in miR-21 induction of endothelial cell differentiation has not yet been 

elucidated. We aimed to clarify it. 
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We first confirmed PTEN as a direct target of miR-21 at a protein expression level. 

In iPSCs pre-differentiated in the presence of VEGF for 3 days, transfection with 

Pre-21 caused a significant reduction of PTEN protein expression, whereas 

transfection with LNA-21 led to a significant induction of PTEN.  

To further confirm this result, we performed a luciferase assay, which has the 

consistency of a gene expression analysis, but is more specific since it assesses the 

binding of miRNA to mRNA, using wild type and mutated 3’ UTR sequences. Co-

transfection of the WT PTEN 3’UTR plasmid and LNA-21 in iPSCs differentiating 

with VEGF resulted in an approximately 1.4 fold increase in luciferase activity. 

Importantly, mutations in the sequence targeted by miR-21 in PTEN 3’UTR 

abolished the observed up-regulation of luciferase activity by miR-21. This result 

confirmed PTEN as a direct target of miR-21 and validated its specific binding to the 

predicted binding site.   

At this point, since PTEN is known to be the antagonist of PI3K, which removes the 

39 phosphate of PIP3, resulting in inhibition of the AKT signalling pathway (Jiang 

and Liu 2008), we aimed to assess whether PTEN inhibition is required for the 

activation of AKT during the VEGF-induced iPSC differentiation process. In order 

to do so, in iPSCs differentiated for 5 days with VEGF, we inhibited PTEN using the 

chemical inhibitor bisperoxovanadium (bpV) for 30min, 2h and 24h. BpV is a well-

established PTPase inhibitor, which binds to the phosphatidylinositol 3-phosphatase 

active site of PTEN through competitive inhibition, with 10- to 100-fold lower 

concentrations than the other PTPase inhibitors (Bauters, Kumarswamy et al.). 

PTEN  shows dual phosphatase activity, dephosphorylating both protein and lipid 

substrates, with a higher specificity towards 3-phosphorylated phosphoinositides (PI) 

such as PtdIns(3)P, PtdIns(3,4)P2 and PtdIns(3,4,5)P3; indeed loss of PTEN activity 

can be monitored with an increase of PtdIns (3,4,5)P3 levels and therefore with a 

dose-dependent increase of Ser473 phosphorylation of AKT (Bauters, Kumarswamy 

et al.). 

Our results showed that phosporylation of AKT at the Ser-473 was increased after 

30min and 24h of PTEN inhibition, as compared to the cells treated with DMSO as a 

control; the protein level of total AKT was instead not altered by PTEN inhibition. 

With this experiment we proved that during the VEGF-induced iPSC differentiation 
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process, inhibition of PTEN increases the AKT phosphorylation and its consequent 

activation.  

Interestingly it has been shown that the PI3K/AKT signalling pathway plays a 

crucial role in many intracellular cascade events including tumour angiogenesis and 

tumour growth (Xia, Meng et al. 2006) and, in particular, the PI3K/AKT pathway 

has been reported to drive the shear- and VEGF-induced stem cell differentiation 

into ECs (Zeng, Xiao et al. 2006). We therefore decided to assess whether the 

PTEN/AKT pathway was essential in driving iPSC differentiation into EC. We 

indeed aimed to inhibit PTEN in iPSCs differentiating in presence of VEGF, in order 

to analyze the expression of the EC markers. Knockdown of genes using specific 

shRNAs is optimal for differentiation studies, since it has a long term and stable 

action on gene inhibition. Furthermore, we found that prolonged expositions of 

iPSCs to the PTEN chemical inhibitor bpV strongly diminished the cell survival, and 

it was indeed only possible to treat the cells with bpV for a short time. Therefore, in 

iPSCs differentiated with VEGF, in order to establish a stable knockdown of PTEN 

we used specific shRNAs to shutdown its expression and we then assessed the effect 

of the knockdown on EC marker expression. PTEN gene expression showed a 

significant repression in iPSCs infected with shPTEN, as compared to cells infected 

with shNT, confirming the efficiency of the shRNA knockdown of PTEN. 

Importantly, VE-cadherin and Flk1 showed a 1.5-fold increase in the gene 

expression after shPTEN infection, as compared to shNT infection. 

Our results indeed highlight for the first time that PTEN inhibition is required to 

induce EC marker expression in iPSCs differentiated with VEGF.  

To conclude our mechanistic studies, after linking the inhibition of PTEN to AKT 

activation and therefore to EC differentiation of iPSCs, we finally wanted to confirm 

it in the miR-21-induced iPSC differentiation system. We indeed showed that miR-

21 overexpression increased the phosphorylation of AKT at the Serine 473 site, 

whereas inhibition of miR-21 reduced AKT phosphorylation, as compared to the 

relative negative controls. The total level of AKT was not significantly altered by 

miR-21 overexpression or inhibition. In conclusion, these data show that miR-21 

inhibits PTEN expression, which in turn increases AKT phosphorylation. 
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All together our results show for the first time that miR-21 inhibits PTEN, therefore 

inducing AKT activation, and stimulates the secretion of TGF-β2, in order to drive 

iPSC differentiation into ECs, through VEGF stimulation.  

We established a new link between miR-21, TGF-β2 and VEGF, which, as 

mentioned before, appears to act through a mutual regulation. Elucidation of the 

molecular pathway involved in the miR-21 induced iPSC differentiation into ECs 

might provide the basic information for stem cell therapy of vascular diseases, e.g. 

tissue engineering and endothelial repair in damaged vessels. 

 

4.5 CONCLUSIONS AND FUTURE WORK 

The work presented in this thesis was based on the hypothesis that specific miRNAs 

and their targets may be able to drive the VEGF-induced iPSC differentiation 

towards EC lineage. 

Indeed, we have demonstrated that differentiation of iPSCs in presence of VEGF 

induces miR-21expression and that miR-21 is able to induce TGF-β2 expression and 

secretion, which in turn increases iPSC differentiation. Moreover TGF-β2 is 

expressed during the VEGF-induced iPSC differentiation and iPSCs treatment with 

the cytokine induces functional endothelial differentiation. We have then proved that 

TGF-β2 regulates EC differentiation of iPSCs through induction of VEGF secretion; 

moreover, miR-21 inhibition decreases VEGF expression in iPSCs. Indeed we have 

showed that the miR-21, TGF-β2 and VEGF pathways are tightly linked by a mutual 

regulation during iPSC differentiation into ECs. Finally, we have partially elucidated 

an additional signalling pathway through which miR-21 induces iPSC differentiation 

by validating PTEN/AKT pathway as a direct target of miR-21 and demonstrating 

that the PTEN/AKT pathway is required in the VEGF-induced EC differentiation of 

iPSCs. 

Evidences presented in this thesis suggest that endothelial lineage differentiation 

from iPSCs is regulated by miR-21/AKT and TGF-β2 pathways. 

Moreover, further elucidation of the molecular targets/pathways involved in the 

iPSC differentiation process regulated by VEGF, miR-21 and TGF-β2, will be useful 
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to fulfil the therapeutic potential of these enhanced ECs. For instance, the 

downstream targets of TGF-β2 need still to be elucidated in order to complete the 

mechanistic study of the miR-21/TGF-β2-regulated differentiation of iPSC. 

Interestingly, in a study from Kato et al. it has been reported that TGF-β can increase 

FoxO3a phosphorylation and transcriptional inactivation via PI3K/AKT; this study 

suggests that AKT/FoxO pathway regulation by TGF-β may be a new mechanism in 

inducing mesangial cell survival and oxidant stress in diabetic kidney disease (Kato, 

Yuan et al. 2006). Even though this mechanism has been described in a different cell 

type, it might be worth investigating it in our differentiation, since the forkhead box 

(Fox) family of transcription factors plays an important role in regulating the 

expression of genes involved in cell growth, proliferation, differentiation, and 

longevity (Tuteja and Kaestner 2007). 

Moreover, for possible future applications, iPSCs can be modified with the 

overexpression or knockdown of miR-21 and/or its targets, such as PTEN/AKT and 

TGF-β2, to improve their endothelial differentiation potential in order to obtain more 

homogeneous EC populations. 

Improvement in EC differentiation will be assessed in in vivo settings. In particular, 

enhanced ECs will be used for tissue engineering of decellularized vessels, in order 

to reduce the stenosis occurrence in vessel grafts. Furthermore, ECs obtained will be 

used for cell transplantation purposes to repair the damaged lumen in a model of 

wire-induced vessel de-endothelialization.  

 

  

http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Longevity
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Figure 71 Endothelial lineage differentiation from iPSCs is regulated by miR-21/AKT and 

TGF-β2 pathways 

A. Differentiation of iPSCs in presence of collagen IV and VEGF induces miR-21expression. miR-21 

induces iPSC differentiation into EC by inhibiting PTEN and therefore inducing AKT 

phosphorylation; moreover miR-21 is able to induce TGF-β2 expression and secretion, which in turn 

increases iPSC differentiation into ECs, through induction of VEGF secretion. 

B. TGF-β2 expression is induced by VEGF during iPSC differentiation and iPSCs treatment with 

TGF-β2 induces functional endothelial differentiation through induction of VEGF secretion. 

Inhibition of miR-21, whose expression is induced by VEGF during iPSC differentiation, decreases 

VEGF expression in iPSCs. Moreover, miR-21 induces TGF-β2 expression and secretion. Indeed, 

miR-21, TGF-β2 and VEGF pathways are tightly linked by a mutual regulation during iPSC 

differentiation into ECs. 
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